Quantum CORDIC -- Arcsin on a Budget
- URL: http://arxiv.org/abs/2411.14434v1
- Date: Sat, 02 Nov 2024 11:00:58 GMT
- Title: Quantum CORDIC -- Arcsin on a Budget
- Authors: Iain Burge, Michel Barbeau, Joaquin Garcia-Alfaro,
- Abstract summary: This work introduces a quantum algorithm for computing the arcsine function to an arbitrary accuracy.
We leverage a technique from embedded computing and field-programmable gate array (FPGA), called COordinate Rotation DIgital Computer (CORDIC)
- Score: 0.8739101659113155
- License:
- Abstract: This work introduces a quantum algorithm for computing the arcsine function to an arbitrary accuracy. We leverage a technique from embedded computing and field-programmable gate array (FPGA), called COordinate Rotation DIgital Computer (CORDIC). CORDIC is a family of iterative algorithms that, in a classical context, can approximate various trigonometric, hyperbolic, and elementary functions using only bit shifts and additions. Adapting CORDIC to the quantum context is non-trivial, as the algorithm traditionally uses several non-reversible operations. We detail a method for CORDIC which avoids such non-reversible operations. We propose multiple approaches to calculate the arcsine function reversibly with CORDIC. For n bits of precision, our method has space complexity of order n qubits, a layer count in the order of n times log n, and a CNOT count in the order of n squared. This primitive function is a required step for the Harrow-Hassidim-Lloyd (HHL) algorithm, is necessary for quantum digital-to-analog conversion, can simplify a quantum speed-up for Monte-Carlo methods, and has direct applications in the quantum estimation of Shapley values.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum Sparse Coding [5.130440339897477]
We develop a quantum-inspired algorithm for sparse coding.
The emergence of quantum computers and Ising machines can potentially lead to more accurate estimations.
We conduct numerical experiments with simulated data on Lightr's quantum-inspired digital platform.
arXiv Detail & Related papers (2022-09-08T13:00:30Z) - Quantum Algorithm based on Quantum Fourier Transform for
Register-by-Constant Addition [0.0]
Quantum arithmetic algorithms are capable of applying arithmetic operations simultaneously on large sets of values.
I present a more efficient addition algorithm than Draper's for cases where there needs to be added just a constant to a target register.
arXiv Detail & Related papers (2022-07-12T04:43:40Z) - Approximate encoding of quantum states using shallow circuits [0.0]
A common requirement of quantum simulations and algorithms is the preparation of complex states through sequences of 2-qubit gates.
Here, we aim at creating an approximate encoding of the target state using a limited number of gates.
Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Quantum Compiling by Deep Reinforcement Learning [30.189226681406392]
The architecture of circuital quantum computers requires layers devoted to compiling high-level quantum algorithms into lower-level circuits of quantum gates.
The general problem of quantum compiling is to approximate any unitary transformation that describes the quantum computation, as a sequence of elements selected from a finite base of universal quantum gates.
We exploit the deep reinforcement learning method as an alternative strategy, which has a significantly different trade-off between search time and exploitation time.
arXiv Detail & Related papers (2021-05-31T15:32:15Z) - Quantum Search for Scaled Hash Function Preimages [1.3299507495084417]
We present the implementation of Grover's algorithm in a quantum simulator to perform a quantum search for preimages of two scaled hash functions.
We show that strategies that suggest a shortcut based on sampling the quantum register after a few steps of Grover's algorithm can only provide some marginal practical advantage in terms of error mitigation.
arXiv Detail & Related papers (2020-09-01T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.