Quantum Algorithm based on Quantum Fourier Transform for
Register-by-Constant Addition
- URL: http://arxiv.org/abs/2207.05309v4
- Date: Tue, 9 Aug 2022 01:44:02 GMT
- Title: Quantum Algorithm based on Quantum Fourier Transform for
Register-by-Constant Addition
- Authors: Filipe Chagas Ferraz
- Abstract summary: Quantum arithmetic algorithms are capable of applying arithmetic operations simultaneously on large sets of values.
I present a more efficient addition algorithm than Draper's for cases where there needs to be added just a constant to a target register.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since Shor's proposition of the method for factoring products of prime
numbers using quantum computing, there has been a quest to implement efficient
quantum arithmetic algorithms. These algorithms are capable of applying
arithmetic operations simultaneously on large sets of values using quantum
parallelism. Draper proposed an addition algorithm based on the quantum Fourier
transform whose operands are two quantum registers, which I refer to as
register-by-register addition. However, for cases where there is the need to be
added a constant value to a target register, Draper's algorithm is more complex
than necessary in terms of number of operations and number of qubits used. In
this paper, I present a more efficient addition algorithm than Draper's for
cases where there needs to be added just a constant to a target register.
Related papers
- Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Integer Factorization by Quantum Measurements [0.0]
Quantum algorithms are at the heart of the ongoing efforts to use quantum mechanics to solve computational problems unsolvable on classical computers.
Among the known quantum algorithms, a special role is played by the Shor algorithm, i.e. a quantum-time algorithm for integer factorization.
Here we present a different algorithm for integer factorization based on another genuine quantum property: quantum measurement.
arXiv Detail & Related papers (2023-09-19T17:00:01Z) - Automated Quantum Oracle Synthesis with a Minimal Number of Qubits [0.6299766708197883]
We present two methods for automatic quantum oracle synthesis.
One method uses a minimal number of qubits, while the other preserves the function domain values while also minimizing the overall required number of qubits.
arXiv Detail & Related papers (2023-04-07T20:12:13Z) - Approximate encoding of quantum states using shallow circuits [0.0]
A common requirement of quantum simulations and algorithms is the preparation of complex states through sequences of 2-qubit gates.
Here, we aim at creating an approximate encoding of the target state using a limited number of gates.
Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Efficient realization of quantum primitives for Shor's algorithm using
PennyLane library [0.0]
Package contains implementations of various quantum gates and well-known quantum algorithms using PennyLane library.
decomposition is used to analyze resources required for an execution of Shor's algorithm on the level of native operations of trapped-ion quantum computer.
arXiv Detail & Related papers (2022-01-14T12:55:28Z) - Using Shor's algorithm on near term Quantum computers: a reduced version [0.0]
We introduce a reduced version of Shor's algorithm that proposes a step forward in increasing the range of numbers that can be factorized on noisy Quantum devices.
In particular, we have found noteworthy results in most cases, often being able to factor the given number with only one of the proposed algorithm.
arXiv Detail & Related papers (2021-12-23T15:36:59Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum Compiling by Deep Reinforcement Learning [30.189226681406392]
The architecture of circuital quantum computers requires layers devoted to compiling high-level quantum algorithms into lower-level circuits of quantum gates.
The general problem of quantum compiling is to approximate any unitary transformation that describes the quantum computation, as a sequence of elements selected from a finite base of universal quantum gates.
We exploit the deep reinforcement learning method as an alternative strategy, which has a significantly different trade-off between search time and exploitation time.
arXiv Detail & Related papers (2021-05-31T15:32:15Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.