Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models
- URL: http://arxiv.org/abs/2411.14449v2
- Date: Mon, 25 Nov 2024 06:51:39 GMT
- Title: Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models
- Authors: Jeongjin Shin, Sangdon Park,
- Abstract summary: We introduce Deferred Activated Backdoor Functionality (DABF) as a new paradigm in backdoor attacks.
Unlike conventional attacks, DABF initially conceals its backdoor, producing benign outputs even when triggered.
DABF attacks exploit the common practice in the life cycle of machine learning models to perform model updates and fine-tuning after initial deployment.
- Score: 6.937795040660591
- License:
- Abstract: Deep learning models are vulnerable to backdoor attacks, where adversaries inject malicious functionality during training that activates on trigger inputs at inference time. Extensive research has focused on developing stealthy backdoor attacks to evade detection and defense mechanisms. However, these approaches still have limitations that leave the door open for detection and mitigation due to their inherent design to cause malicious behavior in the presence of a trigger. To address this limitation, we introduce Deferred Activated Backdoor Functionality (DABF), a new paradigm in backdoor attacks. Unlike conventional attacks, DABF initially conceals its backdoor, producing benign outputs even when triggered. This stealthy behavior allows DABF to bypass multiple detection and defense methods, remaining undetected during initial inspections. The backdoor functionality is strategically activated only after the model undergoes subsequent updates, such as retraining on benign data. DABF attacks exploit the common practice in the life cycle of machine learning models to perform model updates and fine-tuning after initial deployment. To implement DABF attacks, we approach the problem by making the unlearning of the backdoor fragile, allowing it to be easily cancelled and subsequently reactivate the backdoor functionality. To achieve this, we propose a novel two-stage training scheme, called DeferBad. Our extensive experiments across various fine-tuning scenarios, backdoor attack types, datasets, and model architectures demonstrate the effectiveness and stealthiness of DeferBad.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Diff-Cleanse: Identifying and Mitigating Backdoor Attacks in Diffusion Models [3.134071086568745]
Diffusion models (DMs) are regarded as one of the most advanced generative models today.
Recent studies suggest that DMs are vulnerable to backdoor attacks.
This vulnerability poses substantial risks, including reputational damage to model owners.
We introduce Diff-Cleanse, a novel two-stage backdoor defense framework specifically designed for DMs.
arXiv Detail & Related papers (2024-07-31T03:54:41Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
Data-poisoning backdoor attacks are serious security threats to machine learning models.
In this paper, we focus on in-training backdoor defense, aiming to train a clean model even when the dataset may be potentially poisoned.
We propose a novel defense approach called PDB (Proactive Defensive Backdoor)
arXiv Detail & Related papers (2024-05-25T07:52:26Z) - Exploiting Machine Unlearning for Backdoor Attacks in Deep Learning
System [4.9233610638625604]
We propose a novel black-box backdoor attack based on machine unlearning.
The attacker first augments the training set with carefully designed samples, including poison and mitigation data, to train a benign' model.
Then, the attacker posts unlearning requests for the mitigation samples to remove the impact of relevant data on the model, gradually activating the hidden backdoor.
arXiv Detail & Related papers (2023-09-12T02:42:39Z) - Rethinking Backdoor Attacks [122.1008188058615]
In a backdoor attack, an adversary inserts maliciously constructed backdoor examples into a training set to make the resulting model vulnerable to manipulation.
Defending against such attacks typically involves viewing these inserted examples as outliers in the training set and using techniques from robust statistics to detect and remove them.
We show that without structural information about the training data distribution, backdoor attacks are indistinguishable from naturally-occurring features in the data.
arXiv Detail & Related papers (2023-07-19T17:44:54Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Universal Soldier: Using Universal Adversarial Perturbations for
Detecting Backdoor Attacks [15.917794562400449]
A deep learning model may be poisoned by training with backdoored data or by modifying inner network parameters.
It is difficult to distinguish between clean and backdoored models without prior knowledge of the trigger.
We propose a novel method called Universal Soldier for Backdoor detection (USB) and reverse engineering potential backdoor triggers via UAPs.
arXiv Detail & Related papers (2023-02-01T20:47:58Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
We show the advantages of utilizing the frequency domain for establishing undetectable and powerful backdoor attacks.
We also show two possible defences that succeed against frequency-based backdoor attacks and possible ways for the attacker to bypass them.
arXiv Detail & Related papers (2021-09-12T12:44:52Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - WaNet -- Imperceptible Warping-based Backdoor Attack [20.289889150949836]
A third-party model can be poisoned in training to work well in normal conditions but behave maliciously when a trigger pattern appears.
In this paper, we propose using warping-based triggers to attack third-party models.
The proposed backdoor outperforms the previous methods in a human inspection test by a wide margin, proving its stealthiness.
arXiv Detail & Related papers (2021-02-20T15:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.