Behavior Backdoor for Deep Learning Models
- URL: http://arxiv.org/abs/2412.01369v1
- Date: Mon, 02 Dec 2024 10:54:02 GMT
- Title: Behavior Backdoor for Deep Learning Models
- Authors: Jiakai Wang, Pengfei Zhang, Renshuai Tao, Jian Yang, Hao Liu, Xianglong Liu, Yunchao Wei, Yao Zhao,
- Abstract summary: We take the first step towards behavioral backdoor'' attack, which is defined as a behavior-triggered backdoor model training procedure.
We propose the first pipeline of implementing behavior backdoor, i.e., the Quantification Backdoor (QB) attack.
Experiments have been conducted on different models, datasets, and tasks, demonstrating the effectiveness of this novel backdoor attack.
- Score: 95.50787731231063
- License:
- Abstract: The various post-processing methods for deep-learning-based models, such as quantification, pruning, and fine-tuning, play an increasingly important role in artificial intelligence technology, with pre-train large models as one of the main development directions. However, this popular series of post-processing behaviors targeting pre-training deep models has become a breeding ground for new adversarial security issues. In this study, we take the first step towards ``behavioral backdoor'' attack, which is defined as a behavior-triggered backdoor model training procedure, to reveal a new paradigm of backdoor attacks. In practice, we propose the first pipeline of implementing behavior backdoor, i.e., the Quantification Backdoor (QB) attack, upon exploiting model quantification method as the set trigger. Specifically, to adapt the optimization goal of behavior backdoor, we introduce the behavior-driven backdoor object optimizing method by a bi-target behavior backdoor training loss, thus we could guide the poisoned model optimization direction. To update the parameters across multiple models, we adopt the address-shared backdoor model training, thereby the gradient information could be utilized for multimodel collaborative optimization. Extensive experiments have been conducted on different models, datasets, and tasks, demonstrating the effectiveness of this novel backdoor attack and its potential application threats.
Related papers
- Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models [6.937795040660591]
We introduce Deferred Activated Backdoor Functionality (DABF) as a new paradigm in backdoor attacks.
Unlike conventional attacks, DABF initially conceals its backdoor, producing benign outputs even when triggered.
DABF attacks exploit the common practice in the life cycle of machine learning models to perform model updates and fine-tuning after initial deployment.
arXiv Detail & Related papers (2024-11-10T07:01:53Z) - Mitigating Backdoor Attacks using Activation-Guided Model Editing [8.00994004466919]
Backdoor attacks compromise the integrity and reliability of machine learning models.
We propose a novel backdoor mitigation approach via machine unlearning to counter such backdoor attacks.
arXiv Detail & Related papers (2024-07-10T13:43:47Z) - Unlearning Backdoor Attacks through Gradient-Based Model Pruning [10.801476967873173]
We propose a novel approach to counter backdoor attacks by treating their mitigation as an unlearning task.
Our approach offers simplicity and effectiveness, rendering it well-suited for scenarios with limited data availability.
arXiv Detail & Related papers (2024-05-07T00:36:56Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Effective Backdoor Mitigation in Vision-Language Models Depends on the Pre-training Objective [71.39995120597999]
Modern machine learning models are vulnerable to adversarial and backdoor attacks.
Such risks are heightened by the prevalent practice of collecting massive, internet-sourced datasets for training multimodal models.
CleanCLIP is the current state-of-the-art approach to mitigate the effects of backdooring in multimodal models.
arXiv Detail & Related papers (2023-11-25T06:55:13Z) - Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples [67.66153875643964]
Backdoor attacks are serious security threats to machine learning models.
In this paper, we explore the task of purifying a backdoored model using a small clean dataset.
By establishing the connection between backdoor risk and adversarial risk, we derive a novel upper bound for backdoor risk.
arXiv Detail & Related papers (2023-07-20T03:56:04Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z) - Backdoor Defense with Machine Unlearning [32.968653927933296]
We propose BAERASE, a novel method that can erase the backdoor injected into the victim model through machine unlearning.
BAERASE can averagely lower the attack success rates of three kinds of state-of-the-art backdoor attacks by 99% on four benchmark datasets.
arXiv Detail & Related papers (2022-01-24T09:09:12Z) - Backdoor Pre-trained Models Can Transfer to All [33.720258110911274]
We propose a new approach to map the inputs containing triggers directly to a predefined output representation of pre-trained NLP models.
In light of the unique properties of triggers in NLP, we propose two new metrics to measure the performance of backdoor attacks.
arXiv Detail & Related papers (2021-10-30T07:11:24Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.