Guiding Reinforcement Learning Using Uncertainty-Aware Large Language Models
- URL: http://arxiv.org/abs/2411.14457v1
- Date: Fri, 15 Nov 2024 22:00:29 GMT
- Title: Guiding Reinforcement Learning Using Uncertainty-Aware Large Language Models
- Authors: Maryam Shoaeinaeini, Brent Harrison,
- Abstract summary: Large Language Models (LLMs) offer a promising alternative to mitigate RL sample inefficiency and potentially replace human trainers.
We address this limitation by a calibrated guidance system that uses Monte Carlo Dropout to enhance LLM advice reliability.
We also develop a novel RL policy shaping method based on dynamic model average entropy to adjust the LLM's influence on RL policies according to guidance uncertainty.
- Score: 1.2233495442213964
- License:
- Abstract: Human guidance in reinforcement learning (RL) is often impractical for large-scale applications due to high costs and time constraints. Large Language Models (LLMs) offer a promising alternative to mitigate RL sample inefficiency and potentially replace human trainers. However, applying LLMs as RL trainers is challenging due to their overconfidence and less reliable solutions in sequential tasks. We address this limitation by introducing a calibrated guidance system that uses Monte Carlo Dropout to enhance LLM advice reliability by assessing prediction variances from multiple forward passes. Additionally, we develop a novel RL policy shaping method based on dynamic model average entropy to adjust the LLM's influence on RL policies according to guidance uncertainty. This approach ensures robust RL training by relying on reliable LLM guidance. To validate our contributions, we conduct extensive experiments in a Minigrid environment with three goals in varying environment sizes. The results showcase superior model performance compared to uncalibrated LLMs, unguided RL, and calibrated LLMs with different shaping policies. Moreover, we analyze various uncertainty estimation methods, demonstrating the effectiveness of average entropy in reflecting higher uncertainty in incorrect guidance. These findings highlight the persistent overconfidence in fine-tuned LLMs and underscore the importance of effective calibration in sequential decision-making problems.
Related papers
- Large Language Model driven Policy Exploration for Recommender Systems [50.70228564385797]
offline RL policies trained on static user data are vulnerable to distribution shift when deployed in dynamic online environments.
Online RL-based RS also face challenges in production deployment due to the risks of exposing users to untrained or unstable policies.
Large Language Models (LLMs) offer a promising solution to mimic user objectives and preferences for pre-training policies offline.
We propose an Interaction-Augmented Learned Policy (iALP) that utilizes user preferences distilled from an LLM.
arXiv Detail & Related papers (2025-01-23T16:37:44Z) - Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization [22.67700436936984]
We introduce Direct Advantage Policy Optimization (DAPO), a novel step-level offline reinforcement learning algorithm.
DAPO employs a critic function to predict the reasoning accuracy at each step, thereby generating dense signals to refine the generation strategy.
Our results show that DAPO can effectively enhance the mathematical and code capabilities on both SFT models and RL models, demonstrating the effectiveness of DAPO.
arXiv Detail & Related papers (2024-12-24T08:39:35Z) - Dynamic Uncertainty Ranking: Enhancing Retrieval-Augmented In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting [40.78026627009521]
Reinforcement learning (RL) is a promising approach for aligning large language models (LLMs) knowledge with sequential decision-making tasks.
We propose a novel framework to analyze the sensitivity of LLMs to prompt formulations following RL training in a textual environment.
arXiv Detail & Related papers (2024-10-25T18:25:35Z) - Insights from the Inverse: Reconstructing LLM Training Goals Through Inverse RL [7.988692259455583]
Large language models (LLMs) trained with Reinforcement Learning from Human Feedback have demonstrated remarkable capabilities, but their underlying reward functions and decision-making processes remain opaque.
This paper introduces a novel approach to interpreting LLMs by applying inverse reinforcement learning (IRL) to recover their implicit reward functions.
We conduct experiments on toxicity-aligned LLMs of varying sizes, extracting reward models that achieve up to 80.40% accuracy in predicting human preferences.
arXiv Detail & Related papers (2024-10-16T12:14:25Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Reinforcement Learning from LLM Feedback to Counteract Goal
Misgeneralization [0.0]
We introduce a method to address goal misgeneralization in reinforcement learning (RL)
Goal misgeneralization occurs when an agent retains its capabilities out-of-distribution yet pursues a proxy rather than the intended one.
This study demonstrates how the Large Language Model can efficiently supervise RL agents.
arXiv Detail & Related papers (2024-01-14T01:09:48Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.