論文の概要: Reasoning over User Preferences: Knowledge Graph-Augmented LLMs for Explainable Conversational Recommendations
- arxiv url: http://arxiv.org/abs/2411.14459v2
- Date: Thu, 02 Oct 2025 06:21:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:19.565932
- Title: Reasoning over User Preferences: Knowledge Graph-Augmented LLMs for Explainable Conversational Recommendations
- Title(参考訳): ユーザの嗜好に対する推論: 説明可能な会話推奨のための知識グラフ強化LDM
- Authors: Zhangchi Qiu, Linhao Luo, Shirui Pan, Alan Wee-Chung Liew,
- Abstract要約: 対話型レコメンデーションシステム(CRS)は,対話型対話を通じてユーザの好みを捉え,パーソナライズされたレコメンデーションを提供することを目的としている。
現在のCRSは、しばしば知識グラフ(KG)や言語モデルを利用して、ユーザの好みを潜在ベクトルとして抽出し、表現し、説明可能性を制限する。
本稿では,LCMとKGを相乗化してユーザの好みを推論し,既存のCRSの性能と説明可能性を高めるプラグイン・アンド・プレイ・フレームワークを提案する。
- 参考スコア(独自算出の注目度): 58.61021630938566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational Recommender Systems (CRSs) aim to provide personalized recommendations by capturing user preferences through interactive dialogues. Explainability in CRSs is crucial as it enables users to understand the reasoning behind recommendations, increasing system transparency and trustworthiness. However, current CRSs often leverage knowledge graphs (KGs) or language models to extract and represent user preferences as latent vectors, which limits their explainability. Large language models (LLMs) offer powerful reasoning capabilities that can bridge this gap by generating human-understandable preference summaries. However, effectively reasoning over user preferences in CRSs remains challenging as LLMs pre-trained on large-scale corpora may not be well-suited for analyzing user preferences. While KGs provide rich domain knowledge, integrating them with LLMs encounters a significant modality gap between structured KG information and unstructured conversations. In this paper, we propose COMPASS, a plug-and-play framework that synergizes LLMs and KGs to reason over user preferences, enhancing the performance and explainability of existing CRSs. COMPASS employs a two-stage training approach: first, it bridges the gap between the structured KG and natural language through novel graph entity captioning pre-training. Next, COMPASS optimizes user preference reasoning via knowledge-aware instruction fine-tuning, where the LLM learns to reason and summarize user preferences from dialogue histories and KG-augmented context. This enables COMPASS to perform knowledge-aware reasoning and generate interpretable user preferences that can seamlessly integrate with existing CRS models for improving recommendation performance and explainability. Our experiments on benchmark datasets demonstrate the effectiveness of COMPASS in improving various CRS models.
- Abstract(参考訳): 対話型レコメンデーションシステム(CRS)は,対話型対話を通じてユーザの好みを捉え,パーソナライズされたレコメンデーションを提供することを目的としている。
CRSの説明可能性は非常に重要です。レコメンデーションの背後にある理由を理解し、システムの透明性と信頼性を高めます。
しかしながら、現在のCRSは知識グラフ(KG)や言語モデルを利用して、ユーザの好みを潜在ベクトルとして抽出し、表現し、説明可能性を制限する。
大きな言語モデル(LLM)は、人間の理解可能な好みの要約を生成することによって、このギャップを埋める強力な推論機能を提供する。
しかし、大規模コーパスで事前学習されたLCMは、ユーザの好みを分析するのに適していない可能性があるため、CRSにおけるユーザの好みを効果的に推論することは依然として困難である。
KGは豊富なドメイン知識を提供するが、LLMとの統合は構造化されたKG情報と非構造化された会話の間に重要なモダリティギャップに遭遇する。
本稿では,LCMとKGを相乗化してユーザの好みを判断し,既存のCRSの性能と説明性を向上するプラグイン・アンド・プレイフレームワークCompASSを提案する。
第一に、構造化されたKGと自然言語の間のギャップを、事前学習をキャプションする新しいグラフエンティティを通じて橋渡しする。
次に、CompASSは、LLMが対話履歴やKG拡張コンテキストからユーザの嗜好を推論し、要約することを学ぶ、知識認識による微調整によるユーザの嗜好推論を最適化する。
これにより、CompASSは知識を意識した推論を実行し、既存のCRSモデルとシームレスに統合し、レコメンデーション性能と説明可能性を向上させることができる解釈可能なユーザー嗜好を生成することができる。
ベンチマークデータセットを用いた実験は,様々なCRSモデルの改善におけるCompASSの有効性を示す。
関連論文リスト
- Graph Retrieval-Augmented LLM for Conversational Recommendation Systems [52.35491420330534]
G-CRS(Graph Retrieval-Augmented Large Language Model for Conversational Recommender Systems)は、グラフ検索強化世代とテキスト内学習を組み合わせた学習自由フレームワークである。
G-CRSは、タスク固有のトレーニングを必要とせず、既存の手法よりも優れたレコメンデーション性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T03:56:22Z) - EAGER-LLM: Enhancing Large Language Models as Recommenders through Exogenous Behavior-Semantic Integration [60.47645731801866]
大規模言語モデル(LLM)は、高度なレコメンデータシステムの基本バックボーンとしてますます活用されている。
LLMは事前訓練された言語意味論であるが、llm-Backboneを通してゼロから協調意味論を学ぶ。
内因性行動情報と内因性行動情報とを非侵襲的に統合するデコーダのみの生成推薦フレームワークであるEAGER-LLMを提案する。
論文 参考訳(メタデータ) (2025-02-20T17:01:57Z) - Large Language Model Driven Recommendation [34.45328907249946]
言語主導のレコメンデーションの出現は、リコメンデーションのための自然言語(NL)インタラクションの使用を解放した。
この章では、LLMの一般NL能力が、高度にパーソナライズされたRSを構築する新しい機会を導く方法について論じる。
論文 参考訳(メタデータ) (2024-08-20T15:36:24Z) - XRec: Large Language Models for Explainable Recommendation [5.615321475217167]
我々は、XRecと呼ばれるモデルに依存しないフレームワークを導入し、大規模言語モデルがレコメンデーションシステムにおけるユーザの振る舞いを説明することを可能にする。
我々の実験は、説明可能なレコメンデータシステムにおいて、ベースラインアプローチよりも優れた、包括的で意味のある説明を生成するXRecの能力を実証した。
論文 参考訳(メタデータ) (2024-06-04T14:55:14Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - Leveraging Large Language Models in Conversational Recommender Systems [9.751217336860924]
Conversational Recommender System (CRS)は、リアルタイムのマルチターン対話を通じてシステムと対話できるようにすることにより、ユーザに対して透明性とコントロールを向上する。
大言語モデル(LLM)は、自然に会話し、世界知識と常識推論を言語理解に組み込むという前例のない能力を示した。
論文 参考訳(メタデータ) (2023-05-13T16:40:07Z) - KECRS: Towards Knowledge-Enriched Conversational Recommendation System [50.0292306485452]
chit-chatベースの会話レコメンデーションシステム(crs)は、自然言語インタラクションを通じてユーザーにアイテムレコメンデーションを提供する。
外部知識グラフ(KG)がChit-chatベースのCRSに導入されている。
KECRS(Knowledge-Enriched Conversational Recommendation System)の提案
大規模データセットの実験結果は、KECRSが最先端のキトチャットベースのCRSを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-05-18T03:52:06Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
対話型レコメンデータシステム(CRS)は,対話型対話を通じて高品質なアイテムをユーザに推薦することを目的としている。
まず、会話データ自体にユーザの好みを正確に理解するための十分なコンテキスト情報がない。
第二に、自然言語表現とアイテムレベルのユーザ嗜好の間には意味的なギャップがある。
論文 参考訳(メタデータ) (2020-07-08T11:14:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。