Explainable Artificial Intelligence for Medical Applications: A Review
- URL: http://arxiv.org/abs/2412.01829v1
- Date: Fri, 15 Nov 2024 11:31:06 GMT
- Title: Explainable Artificial Intelligence for Medical Applications: A Review
- Authors: Qiyang Sun, Alican Akman, Björn W. Schuller,
- Abstract summary: This article reviews recent research grounded in explainable artificial intelligence (XAI)
It focuses on medical practices within the visual, audio, and multimodal perspectives.
We endeavour to categorise and synthesise these practices, aiming to provide support and guidance for future researchers and healthcare professionals.
- Score: 42.33274794442013
- License:
- Abstract: The continuous development of artificial intelligence (AI) theory has propelled this field to unprecedented heights, owing to the relentless efforts of scholars and researchers. In the medical realm, AI takes a pivotal role, leveraging robust machine learning (ML) algorithms. AI technology in medical imaging aids physicians in X-ray, computed tomography (CT) scans, and magnetic resonance imaging (MRI) diagnoses, conducts pattern recognition and disease prediction based on acoustic data, delivers prognoses on disease types and developmental trends for patients, and employs intelligent health management wearable devices with human-computer interaction technology to name but a few. While these well-established applications have significantly assisted in medical field diagnoses, clinical decision-making, and management, collaboration between the medical and AI sectors faces an urgent challenge: How to substantiate the reliability of decision-making? The underlying issue stems from the conflict between the demand for accountability and result transparency in medical scenarios and the black-box model traits of AI. This article reviews recent research grounded in explainable artificial intelligence (XAI), with an emphasis on medical practices within the visual, audio, and multimodal perspectives. We endeavour to categorise and synthesise these practices, aiming to provide support and guidance for future researchers and healthcare professionals.
Related papers
- Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.
Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
The study presents an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer.
The methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations.
A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions.
arXiv Detail & Related papers (2024-04-05T05:00:21Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
The article explores the transformative potential of generative AI in medical imaging, emphasizing its ability to generate syntheticACM-2 data.
By addressing limitations in dataset size and diversity, these models contribute to more accurate diagnoses and improved patient outcomes.
arXiv Detail & Related papers (2024-03-26T09:55:49Z) - Explainable AI applications in the Medical Domain: a systematic review [1.4419517737536707]
The field of Medical AI faces various challenges, in terms of building user trust, complying with regulations, using data ethically.
This paper presents a literature review on the recent developments of XAI solutions for medical decision support, based on a representative sample of 198 articles published in recent years.
arXiv Detail & Related papers (2023-08-10T08:12:17Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
Recent years have seen a rapid increase in digital medicine research in an attempt to transform traditional healthcare systems.
Computer audition can be seen to be lagging behind, at least in terms of commercial interest.
We categorise the advances needed in four key pillars: Hear, corresponding to the cornerstone technologies needed to analyse auditory signals in real-life conditions; Earlier, for the advances needed in computational and data efficiency; Attentively, for accounting to individual differences and handling the longitudinal nature of medical data.
arXiv Detail & Related papers (2023-01-25T09:25:08Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium.
We identify barriers between AI-model development in research labs and subsequent clinical deployment.
We discuss various AI integration points in a clinical Radiology workflow.
arXiv Detail & Related papers (2022-12-29T05:17:59Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.