LLaVA-MR: Large Language-and-Vision Assistant for Video Moment Retrieval
- URL: http://arxiv.org/abs/2411.14505v1
- Date: Thu, 21 Nov 2024 09:34:23 GMT
- Title: LLaVA-MR: Large Language-and-Vision Assistant for Video Moment Retrieval
- Authors: Weiheng Lu, Jian Li, An Yu, Ming-Ching Chang, Shengpeng Ji, Min Xia,
- Abstract summary: We propose the Large Language-and-Vision Assistant for Moment Retrieval (LLaVA-MR)
LLaVA-MR enables accurate moment retrieval and contextual grounding in videos using Multimodal Large Language Models (MLLMs)
Evaluations on benchmarks like Charades-STA and QVHighlights demonstrate that LLaVA-MR outperforms 11 state-of-the-art methods.
- Score: 14.136397687227111
- License:
- Abstract: Multimodal Large Language Models (MLLMs) are widely used for visual perception, understanding, and reasoning. However, long video processing and precise moment retrieval remain challenging due to LLMs' limited context size and coarse frame extraction. We propose the Large Language-and-Vision Assistant for Moment Retrieval (LLaVA-MR), which enables accurate moment retrieval and contextual grounding in videos using MLLMs. LLaVA-MR combines Dense Frame and Time Encoding (DFTE) for spatial-temporal feature extraction, Informative Frame Selection (IFS) for capturing brief visual and motion patterns, and Dynamic Token Compression (DTC) to manage LLM context limitations. Evaluations on benchmarks like Charades-STA and QVHighlights demonstrate that LLaVA-MR outperforms 11 state-of-the-art methods, achieving an improvement of 1.82% in R1@0.5 and 1.29% in mAP@0.5 on the QVHighlights dataset. Our implementation will be open-sourced upon acceptance.
Related papers
- MomentSeeker: A Comprehensive Benchmark and A Strong Baseline For Moment Retrieval Within Long Videos [62.01402470874109]
We present MomentSeeker, a benchmark to evaluate retrieval models' performance in handling general long-video moment retrieval tasks.
It incorporates long videos of over 500 seconds on average, making it the first benchmark specialized for long-video moment retrieval.
It covers a wide range of task categories (including Moment Search, Caption Alignment, Image-conditioned Moment Search, and Video-conditioned Moment Search) and diverse application scenarios.
We further fine-tune an MLLM-based LVMR retriever on synthetic data, which demonstrates strong performance on our benchmark.
arXiv Detail & Related papers (2025-02-18T05:50:23Z) - InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
This paper aims to improve the performance of video large language models (LM) via long and rich context (LRC) modeling.
We develop a new version of InternVideo2.5 with focus on enhancing the original MLLMs' ability to perceive fine-grained details in videos.
Experimental results demonstrate this unique designML LRC greatly improves the results of video MLLM in mainstream understanding benchmarks.
arXiv Detail & Related papers (2025-01-21T18:59:00Z) - Zero-shot Video Moment Retrieval via Off-the-shelf Multimodal Large Language Models [7.213221003652941]
This paper proposes Moment-GPT, a tuning-free pipeline for zero-shot VMR utilizing frozen MLLMs.
We first employ LLaMA-3 to correct and rephrase the query to mitigate language bias. Subsequently, we design a span generator combined with MiniGPT-v2 to produce candidate spans adaptively.
Our proposed method substantially outperforms the state-ofthe-art MLLM-based and zero-shot models on several public datasets.
arXiv Detail & Related papers (2025-01-14T09:45:10Z) - LLaVA-Zip: Adaptive Visual Token Compression with Intrinsic Image Information [4.33464415015353]
We propose Dynamic Feature Map Reduction (DFMR) based on LLaVA-1.5 to address the challenge of visual token overload.
DFMR dynamically compresses the visual tokens, freeing up token capacity.
Our experimental results demonstrate that integrating DFMR into LLaVA-1.5 significantly improves the performance of LLaVA in varied visual token lengths.
arXiv Detail & Related papers (2024-12-11T20:46:06Z) - AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning [19.68349294206012]
We propose a training-free adaptive inference method for multi-modal LLMs.
With a minimalist design, our method can be applied to both video and image LLMs.
Under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding.
arXiv Detail & Related papers (2024-12-04T11:47:57Z) - TC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations [23.188508465235717]
We propose two strategies to enhance the model's capability in video understanding tasks.
The first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE.
The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask.
arXiv Detail & Related papers (2024-09-05T02:54:17Z) - Dense Connector for MLLMs [89.50595155217108]
We introduce the Dense Connector - a plug-and-play vision-language connector that significantly enhances existing MLLMs.
Building on this, we also propose the Efficient Dense Connector, which achieves performance comparable to LLaVA-v1.5 with only 25% of the visual tokens.
Our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well.
arXiv Detail & Related papers (2024-05-22T16:25:03Z) - Context-Enhanced Video Moment Retrieval with Large Language Models [22.283367604425916]
Current methods for Video Moment Retrieval (VMR) struggle to align complex situations involving specific environmental details, character descriptions, and action narratives.
We propose a Large Language Model-guided Moment Retrieval (LMR) approach that employs the extensive knowledge of Large Language Models (LLMs) to improve video context representation.
Extensive experiments demonstrate that LMR achieves state-of-the-art results, outperforming the nearest competitor by up to 3.28% and 4.06% on the challenging QVHighlights and Charades-STA benchmarks.
arXiv Detail & Related papers (2024-05-21T07:12:27Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - Feast Your Eyes: Mixture-of-Resolution Adaptation for Multimodal Large
Language Models [84.78513908768011]
We propose a novel and efficient method for MLLMs, termed Mixture-of-Resolution Adaptation (MRA)
MRA adopts two visual pathways for images with different resolutions, where high-resolution visual information is embedded into the low-resolution pathway.
To validate MRA, we apply it to a recent MLLM called LLaVA, and term the new model LLaVA-HR.
arXiv Detail & Related papers (2024-03-05T14:31:24Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
Given the remarkable capabilities of large language models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of recent advancements in video understanding.
The emergent capabilities Vid-LLMs are surprisingly advanced, particularly their ability for open-ended multi-granularity reasoning.
This survey presents a comprehensive study of the tasks, datasets, benchmarks, and evaluation methodologies for Vid-LLMs.
arXiv Detail & Related papers (2023-12-29T01:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.