Detecting Distributed Denial of Service Attacks Using Logistic Regression and SVM Methods
- URL: http://arxiv.org/abs/2411.14512v1
- Date: Thu, 21 Nov 2024 13:15:26 GMT
- Title: Detecting Distributed Denial of Service Attacks Using Logistic Regression and SVM Methods
- Authors: Mohammad Arafat Ullah, Arthy Anjum, Rashedul Amin Tuhin, Shamim Akhter,
- Abstract summary: The goal of this paper is to detect DDoS attacks from all service requests and classify them according to DDoS classes.
Two (2) different machine learning approaches, SVM and Logistic Regression, are implemented in the dataset for detecting and classifying DDoS attacks.
Logistic Regression and SVM both achieve 98.65% classification accuracy which is the highest achieved accuracy among other previous experiments with the same dataset.
- Score: 0.0
- License:
- Abstract: A distributed denial-of-service (DDoS) attack is an attempt to produce humongous traffic within a network by overwhelming a targeted server or its neighboring infrastructure with a flood of service requests ceaselessly coming from multiple remotely controlled malware-infected computers or network-connected devices. Thus, exploring DDoS attacks by recognizing their functionalities and differentiating them from normal traffic services are the primary concerns of network security issues particularly for online businesses. In modern networks, most DDoS attacks occur in the network and application layer including HTTP flood, UDP flood, SIDDOS, SMURF, SNMP flood, IP NULL, etc. The goal of this paper is to detect DDoS attacks from all service requests and classify them according to DDoS classes. In this regard, a standard dataset is collected from the internet which contains several network-related attributes and their corresponding DDoS attack class name. Two(2) different machine learning approaches, SVM and Logistic Regression, are implemented in the dataset for detecting and classifying DDoS attacks, and a comparative study is accomplished among them in terms of accuracy, precision, and recall rates. Logistic Regression and SVM both achieve 98.65% classification accuracy which is the highest achieved accuracy among other previous experiments with the same dataset.
Related papers
- Detection of Distributed Denial of Service Attacks based on Machine Learning Algorithms [1.8311368766923968]
We study and apply different Machine Learning (ML) techniques to separate the DDoS attack instances from benign instances.
This paper uses different machine learning techniques for the detection of the attacks efficiently in order to make sure the offered services from web servers available.
arXiv Detail & Related papers (2025-02-03T01:03:39Z) - An Efficient Real Time DDoS Detection Model Using Machine Learning Algorithms [0.0]
This research focuses on developing an efficient real-time DDoS detection system using machine learning algorithms.
The research explores the performance of these algorithms in terms of precision, recall and F1-score as well as time complexity.
arXiv Detail & Related papers (2025-01-24T08:11:57Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.
We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - Detection and classification of DDoS flooding attacks by machine learning method [0.0]
This study focuses on a method for detecting and classifying distributed denial of service (DDoS) attacks using neural networks.
A dataset containing normal traffic and various DDoS attacks was used to train a neural network model with a 24-106-5 architecture.
The model achieved high Accuracy (99.35%), Precision (99.32%), Recall (99.54%), and F-score (0.99) in the classification task.
arXiv Detail & Related papers (2024-12-25T21:58:52Z) - A Novel Supervised Deep Learning Solution to Detect Distributed Denial
of Service (DDoS) attacks on Edge Systems using Convolutional Neural Networks
(CNN) [0.41436032949434404]
This project presents a novel deep learning-based approach for detecting DDoS attacks in network traffic.
The algorithm employed in this study exploits the properties of Convolutional Neural Networks (CNN) and common deep learning algorithms.
The results of this study demonstrate the effectiveness of the proposed algorithm in detecting DDOS attacks, achieving an accuracy of.9883 on 2000 unseen flows in network traffic.
arXiv Detail & Related papers (2023-09-11T17:37:35Z) - Predict And Prevent DDOS Attacks Using Machine Learning and Statistical Algorithms [0.0]
This study uses several machine learning and statistical models to detect DDoS attacks from traces of traffic flow.
The XGboost machine learning model provided the best detection accuracy of (99.9999%) after applying the SMOTE approach to the target class.
arXiv Detail & Related papers (2023-08-30T00:03:32Z) - Poisoning Web-Scale Training Datasets is Practical [73.34964403079775]
We introduce two new dataset poisoning attacks that intentionally introduce malicious examples to a model's performance.
First attack, split-view poisoning, exploits the mutable nature of internet content to ensure a dataset annotator's initial view of the dataset differs from the view downloaded by subsequent clients.
Second attack, frontrunning poisoning, targets web-scale datasets that periodically snapshot crowd-sourced content.
arXiv Detail & Related papers (2023-02-20T18:30:54Z) - Pseudo Label-Guided Model Inversion Attack via Conditional Generative
Adversarial Network [102.21368201494909]
Model inversion (MI) attacks have raised increasing concerns about privacy.
Recent MI attacks leverage a generative adversarial network (GAN) as an image prior to narrow the search space.
We propose Pseudo Label-Guided MI (PLG-MI) attack via conditional GAN (cGAN)
arXiv Detail & Related papers (2023-02-20T07:29:34Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.