Privacy-Preserving Power Flow Analysis via Secure Multi-Party Computation
- URL: http://arxiv.org/abs/2411.14557v1
- Date: Thu, 21 Nov 2024 20:04:16 GMT
- Title: Privacy-Preserving Power Flow Analysis via Secure Multi-Party Computation
- Authors: Jonas von der Heyden, Nils Schlüter, Philipp Binfet, Martin Asman, Markus Zdrallek, Tibor Jager, Moritz Schulze Darup,
- Abstract summary: We show how to perform power flow analysis on cryptographically hidden prosumer data.
We analyze the security of our approach in the universal composability framework.
- Score: 1.8006898281412764
- License:
- Abstract: Smart grids feature a bidirectional flow of electricity and data, enhancing flexibility, efficiency, and reliability in increasingly volatile energy grids. However, data from smart meters can reveal sensitive private information. Consequently, the adoption of smart meters is often restricted via legal means and hampered by limited user acceptance. Since metering data is beneficial for fault-free grid operation, power management, and resource allocation, applying privacy-preserving techniques to smart metering data is an important research problem. This work addresses this by using secure multi-party computation (SMPC), allowing multiple parties to jointly evaluate functions of their private inputs without revealing the latter. Concretely, we show how to perform power flow analysis on cryptographically hidden prosumer data. More precisely, we present a tailored solution to the power flow problem building on an SMPC implementation of Newtons method. We analyze the security of our approach in the universal composability framework and provide benchmarks for various grid types, threat models, and solvers. Our results indicate that secure multi-party computation can be able to alleviate privacy issues in smart grids in certain applications.
Related papers
- Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - RIOT-based smart metering system for privacy-preserving data aggregation using watermarking and encryption [0.0]
This study proposes a privacy-preserving data aggregation protocol that uses reversible watermarking and AES cryptography.
There are two versions of the protocol: one for low-frequency smart meters that uses LSB-shifting-based reversible watermarking (RLS) and another for high-frequency smart meters that uses difference expansion-based reversible watermarking (RDE)
arXiv Detail & Related papers (2025-01-10T18:37:20Z) - Improving Privacy-Preserving Techniques for Smart Grid using Lattice-based Cryptography [1.4856472820492366]
SPDBlock is a blockchain-based solution ensuring privacy, integrity, and resistance to attacks.
It detects and prosecutes malicious entities while efficiently handling multi-dimensional data transmission.
Performance tests reveal SPDBlock's superiority in communication and computational efficiency over traditional schemes.
arXiv Detail & Related papers (2024-04-17T19:51:52Z) - Local Differential Privacy for Smart Meter Data Sharing [13.362785829428457]
Local differential privacy (LDP) methods provide strong privacy guarantees with high efficiency in addressing privacy concerns.
We propose a novel LDP approach (named LDP-SmartEnergy) that utilizes randomized response techniques with sliding windows.
Our evaluations show that LDP-SmartEnergy runs efficiently compared to baseline methods.
arXiv Detail & Related papers (2023-11-08T09:22:23Z) - Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
We employ computer vision techniques of AI to design a non-invasive load monitoring method for smart electric energy management.
We propose to recognize all electric loads from color feature images using a U-shape deep neural network with multi-scale feature extraction and attention mechanism.
arXiv Detail & Related papers (2023-08-08T04:52:19Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - Data-Driven Stochastic AC-OPF using Gaussian Processes [54.94701604030199]
Integrating a significant amount of renewables into a power grid is probably the most a way to reduce carbon emissions from power grids slow down climate change.
This paper presents an alternative data-driven approach based on the AC power flow equations that can incorporate uncertainty inputs.
The GP approach learns a simple yet non-constrained data-driven approach to close this gap to the AC power flow equations.
arXiv Detail & Related papers (2022-07-21T23:02:35Z) - Adversarially Robust Learning for Security-Constrained Optimal Power
Flow [55.816266355623085]
We tackle the problem of N-k security-constrained optimal power flow (SCOPF)
N-k SCOPF is a core problem for the operation of electrical grids.
Inspired by methods in adversarially robust training, we frame N-k SCOPF as a minimax optimization problem.
arXiv Detail & Related papers (2021-11-12T22:08:10Z) - Realistic Differentially-Private Transmission Power Flow Data Release [12.425053979364362]
We propose a fundamentally different post-processing method, using public information of grid losses rather than power dispatch.
We protect more sensitive parameters, i.e., branch shuntance in addition to series impedance.
Our approach addresses a more feasible and realistic scenario, and provides higher than state-of-the-art privacy guarantees.
arXiv Detail & Related papers (2021-03-25T04:04:12Z) - Avoiding Occupancy Detection from Smart Meter using Adversarial Machine
Learning [0.7106986689736826]
We introduce an Adversarial Machine Learning Occupancy Detection Avoidance (AMLODA) framework as a counter attack.
Essentially, the proposed privacy-preserving framework is designed to mask real-time or near real-time electricity usage information.
Our results show that the proposed privacy-aware billing technique upholds users' privacy strongly.
arXiv Detail & Related papers (2020-10-23T20:02:48Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.