Practical Implications of Implementing Local Differential Privacy for Smart grids
- URL: http://arxiv.org/abs/2503.11920v1
- Date: Fri, 14 Mar 2025 23:11:46 GMT
- Title: Practical Implications of Implementing Local Differential Privacy for Smart grids
- Authors: Khadija Hafeez, Mubashir Husain Rehmani, Sumita Mishra, Donna OShea,
- Abstract summary: We discuss the challenges of implementing an LDP-based model for smart grids.<n>We discuss the challenges of translating theoretical models of LDP into a practical setting for smart grids for different utility functions.
- Score: 0.07499722271664144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent smart grid advancements enable near-realtime reporting of electricity consumption, raising concerns about consumer privacy. Differential privacy (DP) has emerged as a viable privacy solution, where a calculated amount of noise is added to the data by a trusted third party, or individual users perturb their information locally, and only send the randomized data to an aggregator for analysis safeguarding users and aggregators privacy. However, the practical implementation of a Local DP-based (LDP) privacy model for smart grids has its own challenges. In this paper, we discuss the challenges of implementing an LDP-based model for smart grids. We compare existing LDP mechanisms in smart grids for privacy preservation of numerical data and discuss different methods for selecting privacy parameters in the existing literature, their limitations and the non-existence of an optimal method for selecting the privacy parameters. We also discuss the challenges of translating theoretical models of LDP into a practical setting for smart grids for different utility functions, the impact of the size of data set on privacy and accuracy, and vulnerability of LDP-based smart grids to manipulation attacks. Finally, we discuss future directions in research for better practical applications in LDP based models for smart grids.
Related papers
- Privacy-Preserving Power Flow Analysis via Secure Multi-Party Computation [1.8006898281412764]
We show how to perform power flow analysis on cryptographically hidden prosumer data.
We analyze the security of our approach in the universal composability framework.
arXiv Detail & Related papers (2024-11-21T20:04:16Z) - Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
Local Differential Privacy (LDP) offers strong privacy guarantees without requiring users to trust external parties.
We propose a Bayesian framework, Bayesian Coordinate Differential Privacy (BCDP), that enables feature-specific privacy quantification.
arXiv Detail & Related papers (2024-10-24T03:39:55Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.<n>We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.<n>We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Local Differential Privacy for Smart Meter Data Sharing [13.362785829428457]
Local differential privacy (LDP) methods provide strong privacy guarantees with high efficiency in addressing privacy concerns.
We propose a novel LDP approach (named LDP-SmartEnergy) that utilizes randomized response techniques with sliding windows.
Our evaluations show that LDP-SmartEnergy runs efficiently compared to baseline methods.
arXiv Detail & Related papers (2023-11-08T09:22:23Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
We propose a modular design for integrating Secure Multi-Party Computation with Solid.
Our architecture, Libertas, requires no protocol level changes in the underlying design of Solid.
We show how this can be combined with existing differential privacy techniques to also ensure output privacy.
arXiv Detail & Related papers (2023-09-28T12:07:40Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - User-Entity Differential Privacy in Learning Natural Language Models [46.177052564590646]
We introduce a novel concept of user-entity differential privacy (UeDP) to provide formal privacy protection simultaneously to both sensitive entities in textual data and data owners in learning natural language models (NLMs)
To preserve UeDP, we developed a novel algorithm, called UeDP-Alg, optimizing the trade-off between privacy loss and model utility with a tight bound sensitivity derived from seamlessly combining user and sensitive entity sampling processes.
An extensive theoretical analysis and evaluation show that our UeDP-Alg outperforms baseline approaches in model utility under the same privacy budget consumption on several NLM tasks, using benchmark datasets
arXiv Detail & Related papers (2022-11-01T16:54:23Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - Production of Categorical Data Verifying Differential Privacy:
Conception and Applications to Machine Learning [0.0]
Differential privacy is a formal definition that allows quantifying the privacy-utility trade-off.
With the local DP (LDP) model, users can sanitize their data locally before transmitting it to the server.
In all cases, we concluded that differentially private ML models achieve nearly the same utility metrics as non-private ones.
arXiv Detail & Related papers (2022-04-02T12:50:14Z) - Generalized Linear Bandits with Local Differential Privacy [4.922800530841394]
Many applications such as personalized medicine and online advertising require the utilization of individual-specific information for effective learning.
This motivates the introduction of local differential privacy (LDP), a stringent notion in privacy, to contextual bandits.
In this paper, we design LDP algorithms for generalized linear bandits to achieve the same regret bound as in non-privacy settings.
arXiv Detail & Related papers (2021-06-07T06:42:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.