On Linear Convergence in Smooth Convex-Concave Bilinearly-Coupled Saddle-Point Optimization: Lower Bounds and Optimal Algorithms
- URL: http://arxiv.org/abs/2411.14601v1
- Date: Thu, 21 Nov 2024 22:06:25 GMT
- Title: On Linear Convergence in Smooth Convex-Concave Bilinearly-Coupled Saddle-Point Optimization: Lower Bounds and Optimal Algorithms
- Authors: Dmitry Kovalev, Ekaterina Borodich,
- Abstract summary: We revisit the smooth convex-concave bilinearly-coupled saddle-point problem of the form $min_xmax_y f(x) + langle y,mathbfB xrangle - g(y)$.
We develop the first lower complexity bounds and matching optimal linearly converging algorithms for this problem class.
- Score: 17.227158587717934
- License:
- Abstract: We revisit the smooth convex-concave bilinearly-coupled saddle-point problem of the form $\min_x\max_y f(x) + \langle y,\mathbf{B} x\rangle - g(y)$. In the highly specific case where each of the functions $f(x)$ and $g(y)$ is either affine or strongly convex, there exist lower bounds on the number of gradient evaluations and matrix-vector multiplications required to solve the problem, as well as matching optimal algorithms. A notable aspect of these algorithms is that they are able to attain linear convergence, i.e., the number of iterations required to solve the problem is proportional to $\log(1/\epsilon)$. However, the class of bilinearly-coupled saddle-point problems for which linear convergence is possible is much wider and can involve smooth non-strongly convex functions $f(x)$ and $g(y)$. Therefore, we develop the first lower complexity bounds and matching optimal linearly converging algorithms for this problem class. Our lower complexity bounds are much more general, but they cover and unify the existing results in the literature. On the other hand, our algorithm implements the separation of complexities, which, for the first time, enables the simultaneous achievement of both optimal gradient evaluation and matrix-vector multiplication complexities, resulting in the best theoretical performance to date.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - A Fully Parameter-Free Second-Order Algorithm for Convex-Concave Minimax Problems with Optimal Iteration Complexity [2.815239177328595]
We propose a Lipschitz-free cubic regularization (LF-CR) algorithm for solving the convex-concave minimax optimization problem.
We also propose a fully parameter-free cubic regularization (FF-CR) algorithm that does not require any parameters of the problem.
To the best of our knowledge, the proposed FF-CR algorithm is the first completely parameter-free second-order algorithm for solving convex-concave minimax optimization problems.
arXiv Detail & Related papers (2024-07-04T01:46:07Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
We study the complexity of producing neither smooth nor convex points of Lipschitz objectives which are possibly using only zero-order evaluations.
Our analysis is based on a simple yet powerful.
Goldstein-subdifferential set, which allows recent advancements in.
nonsmooth non optimization.
arXiv Detail & Related papers (2023-07-10T11:56:04Z) - Linear Query Approximation Algorithms for Non-monotone Submodular
Maximization under Knapsack Constraint [16.02833173359407]
This work introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular over a ground set of size $n$ subject to a knapsack constraint.
$mathsfDLA$ is a deterministic algorithm that provides an approximation factor of $6+epsilon$ while $mathsfRLA$ is a randomized algorithm with an approximation factor of $4+epsilon$.
arXiv Detail & Related papers (2023-05-17T15:27:33Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave
Saddle-Point Problems with Bilinear Coupling [84.47780064014262]
We study a linear convex-concave saddle-point problem $min_xmax_y f(x) ytopmathbfA x - g(y)
arXiv Detail & Related papers (2021-12-30T20:31:46Z) - Lower Bounds and Accelerated Algorithms for Bilevel Optimization [62.192297758346484]
Bilevel optimization has recently attracted growing interests due to its wide applications in modern machine learning problems.
We show that our results are more challenging than that of minimax applications.
arXiv Detail & Related papers (2021-02-07T21:46:29Z) - Block majorization-minimization with diminishing radius for constrained
nonconvex optimization [9.907540661545328]
Block tensor regularization-minimization (BMM) is a simple iterative algorithm for non constrained optimization that minimizes major surrogates in each block.
We show that BMM can produce a gradient $O(epsilon-2(logepsilon-1)2)$ when convex surrogates are used.
arXiv Detail & Related papers (2020-12-07T07:53:09Z) - A Unified Single-loop Alternating Gradient Projection Algorithm for
Nonconvex-Concave and Convex-Nonconcave Minimax Problems [8.797831153231664]
We develop an efficient algorithm for solving minimax problems with theoretical general convexnon objective guarantees.
We show that the proposed algorithm can be used to solve both noncaveepsilon concave (strongly) and (strongly) convexnonconcave minimax problems.
arXiv Detail & Related papers (2020-06-03T04:00:52Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
We present the emphSecond-Order Conditional Gradient Sliding (SOCGS) algorithm.
The SOCGS algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations.
It is useful when the feasible region can only be accessed efficiently through a linear optimization oracle.
arXiv Detail & Related papers (2020-02-20T17:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.