論文の概要: Achieving computational gains with quantum error correction primitives: Generation of long-range entanglement enhanced by error detection
- arxiv url: http://arxiv.org/abs/2411.14638v1
- Date: Fri, 22 Nov 2024 00:08:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:01:05.593317
- Title: Achieving computational gains with quantum error correction primitives: Generation of long-range entanglement enhanced by error detection
- Title(参考訳): 量子誤差補正プリミティブによる計算ゲインの達成:誤差検出による長距離絡みの生成
- Authors: Haoran Liao, Gavin S. Hartnett, Ashish Kakkar, Adrian Tan, Michael Hush, Pranav S. Mundada, Michael J. Biercuk, Yuval Baum,
- Abstract要約: 論理エンコーディングのないQECプリミティブの戦略的応用は超伝導プロセッサにおいて大きな利点をもたらす可能性があることを示す。
本稿では,GHZ(Greenberger-Horne-Zeilinger)状態に依存した長距離CNOTゲートを実装するための新しいプロトコルを提案する。
我々は,現在報告されている中で最大である,真の多部絡み合いを示す75量子GHZ状態を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The resource overhead required to achieve net computational benefits from quantum error correction (QEC) limits its utility while current systems remain constrained in size, despite exceptional progress in experimental demonstrations. In this paper, we demonstrate that the strategic application of QEC primitives without logical encoding can yield significant advantages on superconducting processors--relative to any alternative error-reduction strategy--while only requiring modest overhead. We first present a novel protocol for implementing long-range CNOT gates that relies on a unitarily-prepared Greenberger-Horne-Zeilinger (GHZ) state as well as a unitary disentangling step; the protocol natively introduces an error-detection process using the disentangled qubits as flags. We demonstrate that it achieves state-of-the-art gate fidelities of over 85% across up to 40 lattice sites, significantly and consistently outperforming the best alternative measurement-based protocol without introducing any additional ancilla qubits. We then apply sparse stabilizer measurements to generate large GHZ states by detecting bit-flip and amplitude-damping errors. Employing this technique in combination with deterministic error suppression, we generate a 75-qubit GHZ state exhibiting genuine multipartite entanglement, the largest reported to date. The generation requires no more than 9 ancilla qubits and the fraction of samples discarded due to errors grows no higher than 78%, far lower than previous discard fractions required for tests using comparable numbers of fully encoded qubits. This work in total represents compelling evidence that adopting QEC primitives on current-generation devices can deliver substantial net benefits.
- Abstract(参考訳): 量子エラー補正(QEC)によるネット計算の利点を達成するために必要なリソースオーバーヘッドは、実験的な進歩にもかかわらず、現在のシステムのサイズが制限されている間、その有用性を制限している。
本稿では,QECプリミティブの論理的エンコーディングを伴わない戦略的応用が,超伝導プロセッサにおいて大きな優位性をもたらすことを実証する。
まず,GHZ(Greenberger-Horne-Zeilinger)状態に依存した長距離CNOTゲートを実装するための新しいプロトコルを提案する。
提案手法は,最大40の格子サイトに対して85%以上の最先端ゲート忠実度を実現し,アシラ量子ビットを付加することなく,最も優れた測定ベースのプロトコルを著しくかつ一貫して上回ることを示す。
次に,ビットフリップおよび振幅減衰誤差を検知して大きなGHZ状態を生成するためにスパース安定化器計測を適用した。
この手法を決定論的誤差抑制と組み合わせることで,75kbitのGHZ状態が生成される。
生成には9個のアンシラ量子ビットしか必要とせず、エラーによって破棄されたサンプルの数は78%以上増加し、完全に符号化された量子ビットの同等の数でテストを行うのに必要な過去の廃棄分数よりもはるかに少ない。
この研究は、QECプリミティブを現行のデバイスに採用することは、実質的な純利益をもたらすという説得力のある証拠である。
関連論文リスト
- Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Realizing the Nishimori transition across the error threshold for
constant-depth quantum circuits [0.0]
127個の超伝導量子ビットデバイス上での最も単純な長距離オーダーの生成について検討する。
コヒーレントおよび非コヒーレント誤差率を実験的に調整することにより、2つの空間次元におけるこの復号された長距離秩序の安定性を実証する。
本研究は,100量子ビットを超える量子プロセッサ上で,測定に基づく状態準備が有意義に探索可能であることを示す。
論文 参考訳(メタデータ) (2023-09-06T09:43:12Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
非クリフォードゲートのこのオーバーヘッドを低減するためのプロトコルを導入する。
予備的な結果は、より広い距離で高品質な忠実さを示唆している。
論文 参考訳(メタデータ) (2022-11-18T06:03:10Z) - Benchmarking multi-qubit gates -- I: Metrological aspects [0.0]
量子コンピュータにおけるハードウェアエラーのベンチマークは、最近大きな注目を集めている。
既存のデジタル量子コンピュータのベンチマークでは、大規模な量子回路上でのグローバルな忠実度が平均化されている。
削減されたChoi行列に基づいて,マルチキュービット量子ゲートに適した新しいフィギュア・オブ・メリットを開発した。
論文 参考訳(メタデータ) (2022-10-09T19:36:21Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
本稿では,物理誤差を消去に変換する171ドルYb中性原子量子ビットに対して,量子ビット符号化とゲートプロトコルを提案する。
エラーの98%を消去に変換できると見積もっている。
論文 参考訳(メタデータ) (2022-01-10T18:56:31Z) - Fault-tolerant operation of a logical qubit in a diamond quantum
processor [0.21670084965090575]
ダイヤモンド中のスピン量子ビットを用いた論理量子ビット上のフォールトトレラント動作を実演する。
論理量子ビットレベルでのフォールトトレラントプロトコルの実現は、大規模量子情報処理の鍵となるステップである。
論文 参考訳(メタデータ) (2021-08-03T17:39:25Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - A context-aware gate set tomography characterization of superconducting
qubits [1.4979445283937185]
本稿では,ゲートセットトモグラフィプロトコルのコンテキスト対応バージョンを紹介する。
我々は,クラウドベースの超伝導量子ビットプラットフォームにおいて,コンテキスト依存の誤差を実験的に推定する。
以上の結果から,GSTがこのような文脈認識機能を含むようにアップグレードされた場合,エラーのコヒーレンスが大きいことが示唆された。
論文 参考訳(メタデータ) (2021-03-17T21:41:26Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。