Differentially Private Adaptation of Diffusion Models via Noisy Aggregated Embeddings
- URL: http://arxiv.org/abs/2411.14639v1
- Date: Fri, 22 Nov 2024 00:09:49 GMT
- Title: Differentially Private Adaptation of Diffusion Models via Noisy Aggregated Embeddings
- Authors: Pura Peetathawatchai, Wei-Ning Chen, Berivan Isik, Sanmi Koyejo, Albert No,
- Abstract summary: We introduce novel methods for adapting diffusion models under differential privacy constraints, enabling privacy-preserving style and content transfer without fine-tuning.
We apply these methods to Stable Diffusion for style adaptation using two private datasets: a collection of artworks by a single artist and pictograms from the Paris 2024 Olympics.
Experimental results show that the TI-based adaptation achieves superior fidelity in style transfer, even under strong privacy guarantees.
- Score: 23.687702204151872
- License:
- Abstract: We introduce novel methods for adapting diffusion models under differential privacy (DP) constraints, enabling privacy-preserving style and content transfer without fine-tuning. Traditional approaches to private adaptation, such as DP-SGD, incur significant computational overhead and degrade model performance when applied to large, complex models. Our approach instead leverages embedding-based techniques: Universal Guidance and Textual Inversion (TI), adapted with differentially private mechanisms. We apply these methods to Stable Diffusion for style adaptation using two private datasets: a collection of artworks by a single artist and pictograms from the Paris 2024 Olympics. Experimental results show that the TI-based adaptation achieves superior fidelity in style transfer, even under strong privacy guarantees, while both methods maintain high privacy resilience by employing calibrated noise and subsampling strategies. Our findings demonstrate a feasible and efficient pathway for privacy-preserving diffusion model adaptation, balancing data protection with the fidelity of generated images, and offer insights into embedding-driven methods for DP in generative AI applications.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
The integration of Differential Privacy with diffusion models (DMs) presents a promising yet challenging frontier.
Recent developments in this field have highlighted the potential for generating high-quality synthetic data by pre-training on public data.
We propose a strategy optimized for private diffusion models, which minimizes the number of trainable parameters to enhance the privacy-utility trade-off.
arXiv Detail & Related papers (2024-06-03T14:18:04Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
Single domain generalization aims to enhance the ability of the model to generalize to unknown domains when trained on a single source domain.
The limited diversity in the training data hampers the learning of domain-invariant features, resulting in compromised generalization performance.
We propose CPerb, a simple yet effective cross-perturbation method to enhance the diversity of the training data.
arXiv Detail & Related papers (2023-08-02T03:16:12Z) - DP-TBART: A Transformer-based Autoregressive Model for Differentially
Private Tabular Data Generation [1.4418363806859886]
We present Differentially-Private TaBular AutoRegressive Transformer (DP-TBART), a transformer-based autoregressive model that maintains differential privacy.
We provide a theoretical framework for understanding the limitations of marginal-based approaches and where deep learning-based approaches stand to contribute most.
arXiv Detail & Related papers (2023-07-19T19:40:21Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z) - On the utility and protection of optimization with differential privacy
and classic regularization techniques [9.413131350284083]
We study the effectiveness of the differentially-private descent (DP-SGD) algorithm against standard optimization practices with regularization techniques.
We discuss differential privacy's flaws and limits and empirically demonstrate the often superior privacy-preserving properties of dropout and l2-regularization.
arXiv Detail & Related papers (2022-09-07T14:10:21Z) - Differentially Private Generative Adversarial Networks with Model
Inversion [6.651002556438805]
To protect sensitive data in training a Generative Adversarial Network (GAN), the standard approach is to use differentially private (DP) gradient descent method.
We propose Differentially Private Model Inversion (DPMI) method where the private data is first mapped to the latent space via a public generator.
Our approach outperforms the standard DP-GAN method based on Inception Score, Fr'echet Inception Distance, and classification accuracy under the same privacy guarantee.
arXiv Detail & Related papers (2022-01-10T02:26:26Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - DataLens: Scalable Privacy Preserving Training via Gradient Compression
and Aggregation [15.63770709526671]
We propose a scalable privacy-preserving generative model DATALENS.
We show that, DATALENS significantly outperforms other baseline DP generative models.
We adapt the proposed TOPAGG approach, which is one of the key building blocks in DATALENS, to DP SGD training.
arXiv Detail & Related papers (2021-03-20T06:14:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.