An Optimization Framework for Differentially Private Sparse Fine-Tuning
- URL: http://arxiv.org/abs/2503.12822v1
- Date: Mon, 17 Mar 2025 05:05:05 GMT
- Title: An Optimization Framework for Differentially Private Sparse Fine-Tuning
- Authors: Mehdi Makni, Kayhan Behdin, Gabriel Afriat, Zheng Xu, Sergei Vassilvitskii, Natalia Ponomareva, Hussein Hazimeh, Rahul Mazumder,
- Abstract summary: Differentially private gradient descent (DP-SGD) is broadly considered to be the gold standard for training and fine-tuning neural networks under differential privacy (DP)<n>Recent work has shown that privately fine-tuning only a small subset of model weights and keeping the rest of the weights fixed can lead to better performance.<n>In this work, we propose a new approach for sparse fine-tuning of neural networks under DP.
- Score: 24.545715091775488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially private stochastic gradient descent (DP-SGD) is broadly considered to be the gold standard for training and fine-tuning neural networks under differential privacy (DP). With the increasing availability of high-quality pre-trained model checkpoints (e.g., vision and language models), fine-tuning has become a popular strategy. However, despite recent progress in understanding and applying DP-SGD for private transfer learning tasks, significant challenges remain -- most notably, the performance gap between models fine-tuned with DP-SGD and their non-private counterparts. Sparse fine-tuning on private data has emerged as an alternative to full-model fine-tuning; recent work has shown that privately fine-tuning only a small subset of model weights and keeping the rest of the weights fixed can lead to better performance. In this work, we propose a new approach for sparse fine-tuning of neural networks under DP. Existing work on private sparse finetuning often used fixed choice of trainable weights (e.g., updating only the last layer), or relied on public model's weights to choose the subset of weights to modify. Such choice of weights remains suboptimal. In contrast, we explore an optimization-based approach, where our selection method makes use of the private gradient information, while using off the shelf privacy accounting techniques. Our numerical experiments on several computer vision models and datasets show that our selection method leads to better prediction accuracy, compared to full-model private fine-tuning or existing private sparse fine-tuning approaches.
Related papers
- Differential Privacy Regularization: Protecting Training Data Through Loss Function Regularization [49.1574468325115]
Training machine learning models based on neural networks requires large datasets, which may contain sensitive information.
Differentially private SGD [DP-SGD] requires the modification of the standard gradient descent [SGD] algorithm for training new models.
A novel regularization strategy is proposed to achieve the same goal in a more efficient manner.
arXiv Detail & Related papers (2024-09-25T17:59:32Z) - Private Fine-tuning of Large Language Models with Zeroth-order Optimization [51.19403058739522]
Differentially private gradient descent (DP-SGD) allows models to be trained in a privacy-preserving manner.<n>We introduce DP-ZO, a private fine-tuning framework for large language models by privatizing zeroth order optimization methods.
arXiv Detail & Related papers (2024-01-09T03:53:59Z) - Sparsity-Preserving Differentially Private Training of Large Embedding
Models [67.29926605156788]
DP-SGD is a training algorithm that combines differential privacy with gradient descent.
Applying DP-SGD naively to embedding models can destroy gradient sparsity, leading to reduced training efficiency.
We present two new algorithms, DP-FEST and DP-AdaFEST, that preserve gradient sparsity during private training of large embedding models.
arXiv Detail & Related papers (2023-11-14T17:59:51Z) - Differentially Private Learning with Per-Sample Adaptive Clipping [8.401653565794353]
We propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function.
We show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.
arXiv Detail & Related papers (2022-12-01T07:26:49Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy (DP) provides a formal framework for training machine learning models with individual example level privacy.
Private training using DP-SGD protects against leakage by injecting noise into individual example gradients.
While this result is quite appealing, the computational cost of training large-scale models with DP-SGD is substantially higher than non-private training.
arXiv Detail & Related papers (2022-05-06T01:22:20Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - Large Language Models Can Be Strong Differentially Private Learners [70.0317718115406]
Differentially Private (DP) learning has seen limited success for building large deep learning models of text.
We show that this performance drop can be mitigated with the use of large pretrained models.
We propose a memory saving technique that allows clipping in DP-SGD to run without instantiating per-example gradients.
arXiv Detail & Related papers (2021-10-12T01:45:27Z) - DPlis: Boosting Utility of Differentially Private Deep Learning via
Randomized Smoothing [0.0]
We propose DPlis--Differentially Private Learning wIth Smoothing.
We show that DPlis can effectively boost model quality and training stability under a given privacy budget.
arXiv Detail & Related papers (2021-03-02T06:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.