論文の概要: Benchmarking Multimodal Models for Ukrainian Language Understanding Across Academic and Cultural Domains
- arxiv url: http://arxiv.org/abs/2411.14647v1
- Date: Fri, 22 Nov 2024 00:37:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:03:19.285850
- Title: Benchmarking Multimodal Models for Ukrainian Language Understanding Across Academic and Cultural Domains
- Title(参考訳): 学習領域と文化領域におけるウクライナ語理解のためのマルチモーダルモデルのベンチマーク
- Authors: Yurii Paniv, Artur Kiulian, Dmytro Chaplynskyi, Mykola Khandoga, Anton Polishko, Tetiana Bas, Guillermo Gabrielli,
- Abstract要約: 大学入試(ZNO)から得られた総合的マルチモーダルウクライナ中心ベンチマークZNO-Visionを紹介する。
このベンチマークは、数学、物理学、化学、人文科学など12の分野にまたがる4300以上の専門家による質問で構成されている。
新しいベンチマークとともに、ウクライナ語のマルチモーダルテキスト生成に関する最初の評価研究を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: While the evaluation of multimodal English-centric models is an active area of research with numerous benchmarks, there is a profound lack of benchmarks or evaluation suites for low- and mid-resource languages. We introduce ZNO-Vision, a comprehensive multimodal Ukrainian-centric benchmark derived from standardized university entrance examination (ZNO). The benchmark consists of over 4,300 expert-crafted questions spanning 12 academic disciplines, including mathematics, physics, chemistry, and humanities. We evaluated the performance of both open-source models and API providers, finding that only a handful of models performed above baseline. Alongside the new benchmark, we performed the first evaluation study of multimodal text generation for the Ukrainian language: we measured caption generation quality on the Multi30K-UK dataset, translated the VQA benchmark into Ukrainian, and measured performance degradation relative to original English versions. Lastly, we tested a few models from a cultural perspective on knowledge of national cuisine. We believe our work will advance multimodal generation capabilities for the Ukrainian language and our approach could be useful for other low-resource languages.
- Abstract(参考訳): マルチモーダル・イングリッシュ・センシティブ・モデルの評価は多数のベンチマークによる研究の活発な領域であるが、低級および中級の言語に対するベンチマークや評価スイートが欠如している。
大学入試(ZNO)から得られた総合的マルチモーダルウクライナ中心ベンチマークであるZNO-Visionを紹介する。
このベンチマークは、数学、物理学、化学、人文科学など12の分野にまたがる4300以上の専門家による質問で構成されている。
オープンソースモデルとAPIプロバイダの両方のパフォーマンスを評価した結果,ベースライン上で実行されるモデルはごくわずかであった。
新しいベンチマークとともに、我々はウクライナ語のマルチモーダルテキスト生成の最初の評価研究を行い、Multi30K-UKデータセットのキャプション生成品質を測定し、VQAベンチマークをウクライナ語に翻訳し、元の英語版と比較して性能劣化を測定した。
最後に,国産料理の知識に関する文化的観点から,いくつかのモデルを検証した。
我々は、ウクライナ語のマルチモーダル生成能力を向上し、我々のアプローチは他の低リソース言語にも役立つと信じている。
関連論文リスト
- FoundaBench: Evaluating Chinese Fundamental Knowledge Capabilities of Large Language Models [64.11333762954283]
本稿では,中国のLLMの基本知識能力を厳格に評価するための先駆的ベンチマークであるFoundaBenchを紹介する。
本稿では、従来の評価手法とCircularEvalプロトコルの両方を用いて、モデル応答の潜在的なバイアスを軽減するため、FoundaBenchを用いた12の最先端LCMの広範な評価を行う。
以上の結果から,中国のコーパスで事前学習したモデルの性能が向上し,モデル推論とメモリリコール能力の相違が明らかとなった。
論文 参考訳(メタデータ) (2024-04-29T01:49:07Z) - LLaMA Beyond English: An Empirical Study on Language Capability Transfer [49.298360366468934]
我々は、言語生成の能力と指示を英語以外の言語に効果的に伝達する方法に焦点をあてる。
本稿では,語彙拡張や事前学習,トランスファーに対する指導指導などの重要な要因が与える影響について分析する。
C-Eval、MMLU、AGI-Eval、GAokao-Benchの4つの広く使われている標準テストベンチマークを採用しています。
論文 参考訳(メタデータ) (2024-01-02T06:29:02Z) - Advancing the Evaluation of Traditional Chinese Language Models: Towards
a Comprehensive Benchmark Suite [17.764840326809797]
本稿では,既存の英語データセットを活用し,中国語の言語モデルを評価するための新しいベンチマークセットを提案する。
これらのベンチマークには、コンテキスト質問、要約、分類、テーブル理解など、幅広いタスクが含まれている。
本稿では,これらのベンチマークを用いて,GPT-3.5,台湾-LLaMa-v1.0,モデル7-Cの性能評価を行った。
論文 参考訳(メタデータ) (2023-09-15T14:52:23Z) - OCRBench: On the Hidden Mystery of OCR in Large Multimodal Models [122.27878464009181]
テキスト関連視覚タスクにおいて, GPT4V や Gemini などの大規模マルチモーダルモデルの包括的評価を行った。
OCRBenchには29のデータセットがあり、最も包括的なOCR評価ベンチマークが利用できる。
論文 参考訳(メタデータ) (2023-05-13T11:28:37Z) - Towards Better Instruction Following Language Models for Chinese:
Investigating the Impact of Training Data and Evaluation [12.86275938443485]
本研究では,データ量,品質,言語分布などの学習データ要素がモデル性能に及ぼす影響について検討する。
我々は,実世界の9つのシナリオを含む1,000のサンプルを用いて,様々なモデルを評価する。
GPT-3のようなプロプライエタリな言語モデルに最も近いオープンソースパフォーマンスを持つモデルであるLLaMAの語彙を拡張します。
論文 参考訳(メタデータ) (2023-04-16T18:37:39Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
画像認識言語理解評価ベンチマークについて紹介する。
IGLUEは、視覚的質問応答、クロスモーダル検索、グラウンドド推論、20言語にわたるグラウンドドエンターテイメントタスクをまとめて提供する。
翻訳-テストの転送はゼロショットの転送よりも優れており、少数ショットの学習は多くのタスクに役立てることが難しい。
論文 参考訳(メタデータ) (2022-01-27T18:53:22Z) - Harnessing Multilinguality in Unsupervised Machine Translation for Rare
Languages [48.28540903568198]
マルチリンガル性は低リソース環境において教師なしシステムの実現に不可欠であることを示す。
我々は,5つの低リソース言語(グジャラート語,カザフ語,ネパール語,シンハラ語,トルコ語)について,英語方向と英語方向の単一モデルを提案する。
我々は、これらの言語の現在最先端の教師なしベースラインを全て上回り、最大14.4BLEUのゲインを得る。
論文 参考訳(メタデータ) (2020-09-23T15:07:33Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
言語間TRansfer Evaluation of Multilinguals XTREMEは、40言語および9タスクにわたる多言語表現の言語間一般化能力を評価するためのベンチマークである。
我々は、英語でテストされたモデルは、多くのタスクにおいて人間のパフォーマンスに達するが、言語間変換されたモデルの性能にはまだ大きなギャップがあることを示した。
論文 参考訳(メタデータ) (2020-03-24T19:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。