Boson-fermion universality of mesoscopic entanglement fluctuations in free systems
- URL: http://arxiv.org/abs/2411.14687v1
- Date: Fri, 22 Nov 2024 02:43:18 GMT
- Title: Boson-fermion universality of mesoscopic entanglement fluctuations in free systems
- Authors: Cunzhong Lou, Chushun Tian, Zhixing Zou, Tao Shi, Lih-King Lim,
- Abstract summary: Entanglement fluctuations associated with Schr"odinger evolution of wavefunctions offer a unique perspective.
We revisit here entanglement dynamics of a canonical bosonic model in many-body physics.
We find that when the system is driven out of equilibrium, the long-time entanglement dynamics exhibits strictly the same statistical behaviors as that of free-fermion models.
- Score: 2.5864824580604515
- License:
- Abstract: Entanglement fluctuations associated with Schr\"{o}dinger evolution of wavefunctions offer a unique perspective on various fundamental issues ranging from quantum thermalization to state preparation in quantum devices. Very recently, a subset of present authors have shown that in a class of free-fermion lattice models and interacting spin chains, entanglement dynamics enters into a new regime at long time, with entanglement probes displaying persistent temporal fluctuations, whose statistics falls into the seemingly disparate paradigm of mesoscopic fluctuations in condensed matter physics. This motivate us to revisit here entanglement dynamics of a canonical bosonic model in many-body physics, i.e., a coupled harmonic oscillator chain. We find that when the system is driven out of equilibrium, the long-time entanglement dynamics exhibits strictly the same statistical behaviors as that of free-fermion models. Specifically, irrespective of entanglement probes and microscopic parameters, the statistical distribution of entanglement fluctuations is flanked by asymmetric tails: sub-Gaussian for upward fluctuations and sub-Gamma for downward; moreover, the variance exhibits a crossover from the scaling $\sim 1/L$ to $\sim L_A^3/L^2$, as the subsystem size $L_A$ increases ($L$ the total system size). This insensitivity to the particle statistics, dubbed boson-fermion universality, is contrary to the common wisdom that statistical phenomena of many-body nature depend strongly on particle statistics. Together with our previous work, the present work indicates rich fluctuation phenomena in entanglement dynamics awaiting in-depth explorations.
Related papers
- Emergent Universal Quench Dynamics in Randomly Interacting Spin Models [20.38924078291244]
We report the experimental observation of universal dynamics by monitoring the spin depolarization process in a solid-state NMR system.
We discover a remarkable phenomenon that these correlation functions obey a universal functional form.
Our observation demonstrates the existence of universality even in non-equilibrium dynamics at high temperatures.
arXiv Detail & Related papers (2024-06-11T18:00:10Z) - Unusual Diffusivity in Strongly Disordered Quantum Lattices: Random Dimer Model [0.0]
We study highly disordered quantum lattices using superconducting qubits.
Our predictions challenge conventional understanding of incoherent hopping under strong disorder.
This offers new insights to optimize disordered systems for optoelectrical and quantum information technologies.
arXiv Detail & Related papers (2024-05-31T14:09:48Z) - Emergent Anomalous Hydrodynamics at Infinite Temperature in a Long-Range XXZ Model [14.297989605089663]
We find anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings.
We quantify the degree of quantum chaos using the Kullback-Leibler divergence.
This work offers another deep understanding of emergent anomalous transport phenomena in a wider range of non-integrable quantum many-body systems.
arXiv Detail & Related papers (2024-03-26T17:50:04Z) - Universal fluctuations and noise learning from Hilbert-space ergodicity [3.55103790558995]
Recently a quantum notion of ergodicity has been proposed, namely that isolated, global quantum states uniformly explore their available state space.
Here we observe signatures of this process with an experimental Rydberg quantum simulator and various numerical models.
We then consider the case of an open system interacting noisily with an external environment.
arXiv Detail & Related papers (2024-03-18T17:09:05Z) - Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Mesoscopic fluctuations in entanglement dynamics [0.0]
We show that entanglement entropy variance obeys a universal scaling law, in each class, and the full distribution displays a sub-Gaussian upper and a sub-Gamma lower tail.
These statistics are independent of both the system's microscopic details and the choice of entanglement probes.
They have practical implications for controlling entanglement in mesoscopic devices.
arXiv Detail & Related papers (2023-05-17T05:43:40Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Anomalous ballistic scaling in the tensionless or inviscid
Kardar-Parisi-Zhang equation [0.0]
We show that the zero surface tension or zero viscosity case eludes analytical solutions.
Using numerical simulations, we elucidate a well-defined universality class for this case.
The latter may be relevant to recent quantum spin chain experiments which measure KPZ and ballistic relaxation under different conditions.
arXiv Detail & Related papers (2022-05-18T09:29:09Z) - Distinct Critical Behaviors from the Same State in Quantum Spin and
Population Dynamics Perspectives [0.0]
We show that phase transitions which are discontinuous in the spin system become continuous when viewed through the population perspective.
We introduce a more general class of models which encompasses both cases, and that can be solved exactly in a mean-field limit.
Numerical results are also presented for a number of one-dimensional chains with power-law interactions.
arXiv Detail & Related papers (2020-09-10T18:01:19Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.