Emergent Universal Quench Dynamics in Randomly Interacting Spin Models
- URL: http://arxiv.org/abs/2406.07625v1
- Date: Tue, 11 Jun 2024 18:00:10 GMT
- Title: Emergent Universal Quench Dynamics in Randomly Interacting Spin Models
- Authors: Yuchen Li, Tian-Gang Zhou, Ze Wu, Pai Peng, Shengyu Zhang, Riqiang Fu, Ren Zhang, Wei Zheng, Pengfei Zhang, Hui Zhai, Xinhua Peng, Jiangfeng Du,
- Abstract summary: We report the experimental observation of universal dynamics by monitoring the spin depolarization process in a solid-state NMR system.
We discover a remarkable phenomenon that these correlation functions obey a universal functional form.
Our observation demonstrates the existence of universality even in non-equilibrium dynamics at high temperatures.
- Score: 20.38924078291244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universality often emerges in low-energy equilibrium physics of quantum many-body systems, despite their microscopic complexity and variety. Recently, there has been a growing interest in studying far-from-equilibrium dynamics of quantum many-body systems. Such dynamics usually involves highly excited states beyond the traditional low-energy theory description. Whether universal behaviors can also emerge in such non-equilibrium dynamics is a central issue at the frontier of quantum dynamics. Here we report the experimental observation of universal dynamics by monitoring the spin depolarization process in a solid-state NMR system described by an ensemble of randomly interacting spins. The spin depolarization can be related to temporal spin-spin correlation functions at high temperatures. We discover a remarkable phenomenon that these correlation functions obey a universal functional form. This experimental fact helps us identify the dominant interacting processes in the spin depolarization dynamics that lead to this universality. Our observation demonstrates the existence of universality even in non-equilibrium dynamics at high temperatures, thereby complementing the well-established universality in low-energy physics.
Related papers
- Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Dynamics of magnetization at infinite temperature in a Heisenberg spin chain [105.07522062418397]
In a chain of 46 superconducting qubits, we study the probability distribution, $P(mathcalM)$, of the magnetization transferred across the chain's center.
The first two moments of $P(mathcalM)$ show superdiffusive behavior, a hallmark of KPZ.
The third and fourth moments rule out the KPZ conjecture and allow for evaluating other theories.
arXiv Detail & Related papers (2023-06-15T17:58:48Z) - Non-Gaussian dynamics of quantum fluctuations and mean-field limit in
open quantum central spin systems [0.0]
Central spin systems are paradigmatic models for nitrogen-vacancy centers and quantum dots.
Here, we derive exact results on the emergent behavior of open quantum central spin systems.
Our findings may become relevant for developing fully quantum descriptions of many-body solid-state devices.
arXiv Detail & Related papers (2023-05-24T20:23:31Z) - Universality of Bose-Einstein Condensation and Quenched Formation
Dynamics [0.0]
The emergence of macroscopic coherence in a many-body quantum system is a ubiquitous phenomenon across different physical systems and scales.
Characteristic examples include symmetry-breaking in the Kibble-Zurek mechanism, coarsening and phase-ordering kinetics, and universaltemporal scaling around non-thermal fixed points.
The Chapter concludes with a brief review of the potential relevance of some of these concepts in modelling the large-scale distribution of dark matter in the universe.
arXiv Detail & Related papers (2023-04-19T10:12:52Z) - Tunable itinerant spin dynamics with polar molecules [2.830197032154302]
Ising and spin exchange interactions are precisely tuned by varying the strength and orientation of an electric field.
Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics.
arXiv Detail & Related papers (2022-08-03T16:57:36Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Observing emergent hydrodynamics in a long-range quantum magnet [0.0]
We experimentally probe the quantum dynamics of 51 individually controlled ions, realizing a long-range interacting spin chain.
Our observations demonstrate the potential for engineered quantum systems to provide key insights into universal properties of non-equilibrium states of quantum matter.
arXiv Detail & Related papers (2021-06-30T18:00:47Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.