EV-PINN: A Physics-Informed Neural Network for Predicting Electric Vehicle Dynamics
- URL: http://arxiv.org/abs/2411.14691v1
- Date: Fri, 22 Nov 2024 02:56:47 GMT
- Title: EV-PINN: A Physics-Informed Neural Network for Predicting Electric Vehicle Dynamics
- Authors: Hansol Lim, Jee Won Lee, Jonathan Boyack, Jongseong Brad Choi,
- Abstract summary: An onboard prediction of dynamic parameters (e.g. Aerodynamic drag, rolling resistance) enables accurate path planning for EVs.
This paper presents EV-PINN, a Physics-Informed Neural Network approach in predicting instantaneous battery power and cumulative energy consumption during cruising.
- Score: 0.3749861135832072
- License:
- Abstract: An onboard prediction of dynamic parameters (e.g. Aerodynamic drag, rolling resistance) enables accurate path planning for EVs. This paper presents EV-PINN, a Physics-Informed Neural Network approach in predicting instantaneous battery power and cumulative energy consumption during cruising while generalizing to the nonlinear dynamics of an EV. Our method learns real-world parameters such as motor efficiency, regenerative braking efficiency, vehicle mass, coefficient of aerodynamic drag, and coefficient of rolling resistance using automatic differentiation based on dynamics and ensures consistency with ground truth vehicle data. EV-PINN was validated using 15 and 35 minutes of in-situ battery log data from the Tesla Model 3 Long Range and Tesla Model S, respectively. With only vehicle speed and time as inputs, our model achieves high accuracy and generalization to dynamics, with validation losses of 0.002195 and 0.002292, respectively. This demonstrates EV-PINN's effectiveness in estimating parameters and predicting battery usage under actual driving conditions without the need for additional sensors.
Related papers
- Knowledge Distillation Neural Network for Predicting Car-following Behaviour of Human-driven and Autonomous Vehicles [2.099922236065961]
This study investigates the car-following behaviours of three vehicle pairs: HDV-AV, AV-HDV and HDV-HDV in mixed traffic.
We introduce a data-driven Knowledge Distillation Neural Network (KDNN) model for predicting car-following behaviour in terms of speed.
arXiv Detail & Related papers (2024-11-08T14:57:59Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Deep Dynamics: Vehicle Dynamics Modeling with a Physics-Informed Neural
Network for Autonomous Racing [0.0]
This paper introduces Deep Dynamics, a physics-informed neural network (PINN) for vehicle dynamics modeling of an autonomous racecar.
It combines physics coefficient estimation and dynamical equations to accurately predict vehicle states at high speeds.
Open-loop and closed-loop performance assessments, using a physics-based simulator and full-scale autonomous Indy racecar data, highlight Deep Dynamics as a promising approach for modeling racecar vehicle dynamics.
arXiv Detail & Related papers (2023-12-07T15:44:56Z) - Data-Driven Probabilistic Energy Consumption Estimation for Battery
Electric Vehicles with Model Uncertainty [1.0787390511207684]
We propose a new driver behaviour-centric EV energy consumption estimation model using probabilistic neural networks with model uncertainty.
By incorporating model uncertainty into neural networks, we have created an ensemble of neural networks using Monte Carlo.
Our approach achieves a mean absolute percentage error of 9.3% and outperforms other existing EV energy consumption models in terms of accuracy.
arXiv Detail & Related papers (2023-07-02T04:30:20Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Analyzing the Travel and Charging Behavior of Electric Vehicles -- A
Data-driven Approach [1.7403133838762446]
Electric vehicles (EVs) may pose significant electricity demand on power systems.
In this project, we use the National House Hold Survey (NHTS) data to form sequences of trips.
We develop machine learning models to predict the parameters of the next trip of the drivers, including trip start time, end time, and distance.
arXiv Detail & Related papers (2021-06-11T15:53:59Z) - Safe Model-based Off-policy Reinforcement Learning for Eco-Driving in
Connected and Automated Hybrid Electric Vehicles [3.5259944260228977]
This work proposes a Safe Off-policy Model-Based Reinforcement Learning algorithm for the eco-driving problem.
The proposed algorithm leads to a policy with a higher average speed and a better fuel economy compared to the model-free agent.
arXiv Detail & Related papers (2021-05-25T03:41:29Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.