Deep Dynamics: Vehicle Dynamics Modeling with a Physics-Informed Neural
Network for Autonomous Racing
- URL: http://arxiv.org/abs/2312.04374v1
- Date: Thu, 7 Dec 2023 15:44:56 GMT
- Title: Deep Dynamics: Vehicle Dynamics Modeling with a Physics-Informed Neural
Network for Autonomous Racing
- Authors: John Chrosniak and Jingyun Ning and Madhur Behl
- Abstract summary: This paper introduces Deep Dynamics, a physics-informed neural network (PINN) for vehicle dynamics modeling of an autonomous racecar.
It combines physics coefficient estimation and dynamical equations to accurately predict vehicle states at high speeds.
Open-loop and closed-loop performance assessments, using a physics-based simulator and full-scale autonomous Indy racecar data, highlight Deep Dynamics as a promising approach for modeling racecar vehicle dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autonomous racing is a critical research area for autonomous driving,
presenting significant challenges in vehicle dynamics modeling, such as
balancing model precision and computational efficiency at high speeds
(>280kmph), where minor errors in modeling have severe consequences. Existing
physics-based models for vehicle dynamics require elaborate testing setups and
tuning, which are hard to implement, time-intensive, and cost-prohibitive.
Conversely, purely data-driven approaches do not generalize well and cannot
adequately ensure physical constraints on predictions. This paper introduces
Deep Dynamics, a physics-informed neural network (PINN) for vehicle dynamics
modeling of an autonomous racecar. It combines physics coefficient estimation
and dynamical equations to accurately predict vehicle states at high speeds and
includes a unique Physics Guard layer to ensure internal coefficient estimates
remain within their nominal physical ranges. Open-loop and closed-loop
performance assessments, using a physics-based simulator and full-scale
autonomous Indy racecar data, highlight Deep Dynamics as a promising approach
for modeling racecar vehicle dynamics.
Related papers
- Fine-Tuning Hybrid Physics-Informed Neural Networks for Vehicle Dynamics Model Estimation [2.432448600920501]
This paper introduces the Fine-Tuning Hybrid Dynamics (FTHD) method, which integrates supervised and unsupervised Physics-Informed Neural Networks (PINNs)
FTHD fine-tunes a pre-trained Deep Dynamics Model (DDM) using a smaller training dataset, delivering superior performance compared to state-of-the-art methods.
An Extended Kalman Filter (EKF) is embedded within FTHD to effectively manage noisy real-world data, ensuring accurate denoising.
Results demonstrate that the hybrid approach significantly improves parameter estimation accuracy, even with reduced data, and outperforms existing models.
arXiv Detail & Related papers (2024-09-29T10:33:07Z) - Efficient Motion Prediction: A Lightweight & Accurate Trajectory Prediction Model With Fast Training and Inference Speed [56.27022390372502]
We propose a new efficient motion prediction model, which achieves highly competitive benchmark results while training only a few hours on a single GPU.
Its low inference latency makes it particularly suitable for deployment in autonomous applications with limited computing resources.
arXiv Detail & Related papers (2024-09-24T14:58:27Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Vehicle Dynamics Modeling for Autonomous Racing Using Gaussian Processes [0.0]
This paper presents the most detailed analysis of the applicability of GP models for approximating vehicle dynamics for autonomous racing.
We construct dynamic, and extended kinematic models for the popular F1TENTH racing platform.
arXiv Detail & Related papers (2023-06-06T04:53:06Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field.
We propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework.
Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin.
arXiv Detail & Related papers (2022-09-01T04:58:18Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
One of the major challenges is to infer the underlying causes, which generate the perceived data stream.
Success of machine learning based predictive models requires massive annotated data for model training.
Our experiments on both synthetic and real-world datasets exhibit that the proposed ST-PCNN with active learning converges to optimal accuracy with substantially fewer instances.
arXiv Detail & Related papers (2021-08-11T18:05:55Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - A Physics-Informed Deep Learning Paradigm for Car-Following Models [3.093890460224435]
We develop a family of neural network based car-following models informed by physics-based models.
Two types of PIDL-CFM problems are studied, one to predict acceleration only and the other to jointly predict acceleration and discover model parameters.
The results demonstrate the superior performance of neural networks informed by physics over those without.
arXiv Detail & Related papers (2020-12-24T18:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.