Improving Mathematical Reasoning Capabilities of Small Language Models via Feedback-Driven Distillation
- URL: http://arxiv.org/abs/2411.14698v1
- Date: Fri, 22 Nov 2024 03:12:39 GMT
- Title: Improving Mathematical Reasoning Capabilities of Small Language Models via Feedback-Driven Distillation
- Authors: Xunyu Zhu, Jian Li, Can Ma, Weiping Wang,
- Abstract summary: Large Language Models (LLMs) demonstrate exceptional reasoning capabilities, often achieving state-of-the-art performance in various tasks.
A promising solution is knowledge distillation, where LLMs transfer reasoning capabilities to Small Language Models (SLMs), enabling wider deployment on low-resource devices.
We propose a Feedback-Driven Distillation (FDD) framework to enhance SLMs' mathematical reasoning capabilities.
- Score: 15.542737858152053
- License:
- Abstract: Large Language Models (LLMs) demonstrate exceptional reasoning capabilities, often achieving state-of-the-art performance in various tasks. However, their substantial computational and memory demands, due to billions of parameters, hinder deployment in resource-constrained environments. A promising solution is knowledge distillation, where LLMs transfer reasoning capabilities to Small Language Models (SLMs, $\le$ 1B parameters), enabling wider deployment on low-resource devices. Existing methods primarily focus on generating high-quality reasoning rationales for distillation datasets but often neglect the critical role of data quantity and quality. To address these challenges, we propose a Feedback-Driven Distillation (FDD) framework to enhance SLMs' mathematical reasoning capabilities. In the initialization stage, a distillation dataset is constructed by prompting LLMs to pair mathematical problems with corresponding reasoning rationales. We classify problems into easy and hard categories based on SLM performance. For easy problems, LLMs generate more complex variations, while for hard problems, new questions of similar complexity are synthesized. In addition, we propose a multi-round distillation paradigm to iteratively enrich the distillation datasets, thereby progressively improving the mathematical reasoning abilities of SLMs. Experimental results demonstrate that our method can make SLMs achieve SOTA mathematical reasoning performance.
Related papers
- Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
Large language models (LLMs) have demonstrated remarkable potential across numerous applications.
In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations.
We investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance.
arXiv Detail & Related papers (2024-09-03T07:01:46Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - ELAD: Explanation-Guided Large Language Models Active Distillation [16.243249111524403]
The deployment and application of Large Language Models (LLMs) is hindered by their memory inefficiency, computational demands, and the high costs of API inferences.
Traditional distillation methods, which transfer the capabilities of LLMs to smaller models, often fail to determine whether the knowledge has been sufficiently transferred.
We propose an Explanation-Guided LLMs Active Distillation (ELAD) framework that employs an active learning strategy to optimize the balance between annotation costs and model performance.
arXiv Detail & Related papers (2024-02-20T15:47:59Z) - Turning Dust into Gold: Distilling Complex Reasoning Capabilities from
LLMs by Leveraging Negative Data [15.088675135566646]
Large Language Models (LLMs) have performed well on various reasoning tasks, but their inaccessibility and numerous parameters hinder wide application in practice.
We propose a model specialization framework to distill LLMs with negative samples besides positive ones.
We conduct extensive experiments across arithmetic reasoning tasks to demonstrate the role of negative data in distillation from LLM.
arXiv Detail & Related papers (2023-12-20T08:28:36Z) - Mind's Mirror: Distilling Self-Evaluation Capability and Comprehensive Thinking from Large Language Models [20.28989820878285]
Large language models (LLMs) have achieved remarkable advancements in natural language processing.
The massive scale and computational demands of these models present formidable challenges when considering their practical deployment in resource-constrained environments.
arXiv Detail & Related papers (2023-11-15T18:56:23Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
We introduce MuSR, a dataset for evaluating language models on soft reasoning tasks specified in a natural language narrative.
This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm.
Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning.
arXiv Detail & Related papers (2023-10-24T17:59:20Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.