論文の概要: Enhancing Molecular Design through Graph-based Topological Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2411.14726v1
- Date: Fri, 22 Nov 2024 04:45:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:02:40.713153
- Title: Enhancing Molecular Design through Graph-based Topological Reinforcement Learning
- Title(参考訳): グラフに基づくトポロジカル強化学習による分子設計の強化
- Authors: Xiangyu Zhang,
- Abstract要約: 本稿では,化学データと構造データを統合したグラフベーストポロジカル強化学習(GraphTRL)を提案する。
評価の結果、GraphTRLは既存のアフィニティ予測法よりも優れており、薬物発見を加速するための有望なアプローチを提供する。
- 参考スコア(独自算出の注目度): 10.632524607651105
- License:
- Abstract: The generation of drug-like molecules is crucial for drug design. Existing reinforcement learning (RL) methods often overlook structural information. However, feature engineering-based methods usually merely focus on binding affinity prediction without substantial molecular modification. To address this, we present Graph-based Topological Reinforcement Learning (GraphTRL), which integrates both chemical and structural data for improved molecular generation. GraphTRL leverages multiscale weighted colored graphs (MWCG) and persistent homology, combined with molecular fingerprints, as the state space for RL. Evaluations show that GraphTRL outperforms existing methods in binding affinity prediction, offering a promising approach to accelerate drug discovery.
- Abstract(参考訳): ドラッグライクな分子の生成は、ドラッグデザインに不可欠である。
既存の強化学習(RL)手法は、しばしば構造情報を見落としている。
しかし、機能工学に基づく手法は通常、実質的な分子修飾を伴わずに結合親和性予測にのみ焦点をあてる。
そこで我々は,化学データと構造データを統合したグラフベースのトポロジカル強化学習(GraphTRL)を提案する。
GraphTRLは、RLのステートスペースとして、マルチスケールの重み付き色グラフ(MWCG)と、分子指紋と組み合わせた永続的ホモロジーを利用する。
評価の結果、GraphTRLはアフィニティ予測において既存の手法よりも優れており、薬物発見を加速するための有望なアプローチを提供する。
関連論文リスト
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
本稿では,デコーダのみのグラフトランスフォーマアーキテクチャであるGraphXFormについて述べる。
液液抽出のための2つの溶媒設計課題について評価し,4つの最先端分子設計技術より優れていることを示した。
論文 参考訳(メタデータ) (2024-11-03T19:45:15Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
小型分子のための機能的グループ認識表現(FARM)について紹介する。
FARMはSMILES、自然言語、分子グラフのギャップを埋めるために設計された基礎モデルである。
MoleculeNetデータセット上でFARMを厳格に評価し、12タスク中10タスクで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-10-02T23:04:58Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
本稿では,分子特性予測のための自己教師付きグラフニューラルネットワークフレームワークであるDIG-Molを紹介する。
DIG-Molは2つの相互接続ネットワークと運動量蒸留ネットワークを統合し、分子特性を効率的に改善する。
我々は,様々な分子特性予測タスクにおける広範囲な実験的評価により,DIG-Molの最先端性能を確立した。
論文 参考訳(メタデータ) (2024-05-04T10:09:27Z) - Molecular Property Prediction Based on Graph Structure Learning [29.516479802217205]
我々はGSL-MPPと呼ばれるグラフ構造学習(GSL)に基づくMPPアプローチを提案する。
具体的には、まず、分子グラフ上にグラフニューラルネットワーク(GNN)を適用し、分子表現を抽出する。
分子指紋を用いて分子類似性グラフ(MSG)を構築する。
論文 参考訳(メタデータ) (2023-12-28T06:45:13Z) - GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction [2.523552067304274]
GraphCL-DTAは、薬物表現を学習する分子グラフのためのグラフコントラスト学習フレームワークである。
次に、薬物と標的表現の均一性を調整するために直接使用できる新しい損失関数を設計する。
上記のイノベーティブな要素の有効性は、2つの実際のデータセットで検証される。
論文 参考訳(メタデータ) (2023-07-18T06:01:37Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Graph-based Molecular Representation Learning [59.06193431883431]
分子表現学習(MRL)は、機械学習と化学科学を結びつけるための重要なステップである。
近年、MRLは、特に深層分子グラフ学習に基づく手法において、かなりの進歩を遂げている。
論文 参考訳(メタデータ) (2022-07-08T17:43:20Z) - KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular
Property Prediction [13.55018269009361]
我々は、分子グラフ表現学習のための新しい自己教師付き学習フレームワーク、KPGT(Knowledge-guided Pre-training of Graph Transformer)を紹介する。
KPGTは、いくつかの分子特性予測タスクにおける最先端の手法よりも優れた性能を提供することができる。
論文 参考訳(メタデータ) (2022-06-02T08:22:14Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
グラフニューラルネットワーク(GNN)は、薬物の設計と発見の問題を解決するために広く使われている。
分子グラフ生成における表現第一のアプローチを提案する。
我々のアーキテクチャは、医薬品のデータセットの有意義な表現を学習し、目標指向の薬物合成のためのプラットフォームを提供する。
論文 参考訳(メタデータ) (2021-10-12T18:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。