Attributed Graph Clustering via Generalized Quaternion Representation Learning
- URL: http://arxiv.org/abs/2411.14727v1
- Date: Fri, 22 Nov 2024 04:46:31 GMT
- Title: Attributed Graph Clustering via Generalized Quaternion Representation Learning
- Authors: Junyang Chen, Yiqun Zhang, Mengke Li, Yang Lu, Yiu-ming Cheung,
- Abstract summary: We propose a graph auto-encoder network, which introduces quaternion operations to the encoders to achieve efficient structured feature representation learning.
It turns out that the representations of nodes learned by the proposed Graph Clustering are more discriminative, containing global distribution information, and are more general, suiting downstream clustering under different $k$s.
- Score: 38.98084537010657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering complex data in the form of attributed graphs has attracted increasing attention, where appropriate graph representation is a critical prerequisite for accurate cluster analysis. However, the Graph Convolutional Network will homogenize the representation of graph nodes due to the well-known over-smoothing effect. This limits the network architecture to a shallow one, losing the ability to capture the critical global distribution information for clustering. Therefore, we propose a generalized graph auto-encoder network, which introduces quaternion operations to the encoders to achieve efficient structured feature representation learning without incurring deeper network and larger-scale parameters. The generalization of our method lies in the following two aspects: 1) connecting the quaternion operation naturally suitable for four feature components with graph data of arbitrary attribute dimensions, and 2) introducing a generalized graph clustering objective as a loss term to obtain clustering-friendly representations without requiring a pre-specified number of clusters $k$. It turns out that the representations of nodes learned by the proposed Graph Clustering based on Generalized Quaternion representation learning (GCGQ) are more discriminative, containing global distribution information, and are more general, suiting downstream clustering under different $k$s. Extensive experiments including significance tests, ablation studies, and qualitative results, illustrate the superiority of GCGQ. The source code is temporarily opened at \url{https://anonymous.4open.science/r/ICLR-25-No7181-codes}.
Related papers
- IsoSEL: Isometric Structural Entropy Learning for Deep Graph Clustering in Hyperbolic Space [57.036143666293334]
Graph clustering is a longstanding topic in machine learning.
In this paper, we study a challenging yet practical problem: deep graph clustering without K considering the imbalance in reality.
We present a novel IsoSEL framework for deep graph clustering, where we design a hyperbolic neural network to learn partitioning tree in the Lorentz model of hyperbolic space.
arXiv Detail & Related papers (2025-04-14T08:21:41Z) - Dual Boost-Driven Graph-Level Clustering Network [17.423787223848453]
We propose a novel Dual Boost-Driven Graph-Level Clustering Network (DBGCN) to alternately promote graph-level clustering and filtering out interference information.
In the pooling step, we evaluate the contribution of features at the global and optimize them using a learnable transformation matrix.
We first identify and suppress information detrimental to clustering by evaluating similarities between graph-level representations.
arXiv Detail & Related papers (2025-04-08T04:32:46Z) - Synergistic Deep Graph Clustering Network [14.569867830074292]
We propose a graph clustering framework named Synergistic Deep Graph Clustering Network (SynC)
In our approach, we design a Transform Input Graph Auto-Encoder (TIGAE) to obtain high-quality embeddings for guiding structure augmentation.
Notably, representation learning and structure augmentation share weights, significantly reducing the number of model parameters.
arXiv Detail & Related papers (2024-06-22T09:40:34Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
We propose a novel self-supervised deep graph clustering method named Redundancy-Free Graph Clustering (R$2$FGC)
It extracts the attribute- and structure-level relational information from both global and local views based on an autoencoder and a graph autoencoder.
Our experiments are performed on widely used benchmark datasets to validate the superiority of our R$2$FGC over state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-09T06:18:50Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
This paper studies the problem of graph-level clustering, which is a novel yet challenging task.
We propose a general graph-level clustering framework named Graph-Level Contrastive Clustering (GLCC)
Experiments on a range of well-known datasets demonstrate the superiority of our proposed GLCC over competitive baselines.
arXiv Detail & Related papers (2022-10-21T11:08:10Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Dual Contrastive Attributed Graph Clustering Network [6.796682703663566]
We propose a generic framework called Dual Contrastive Attributed Graph Clustering Network (DCAGC)
In DCAGC, by leveraging Neighborhood Contrast Module, the similarity of the neighbor nodes will be maximized and the quality of the node representation will be improved.
All the modules of DCAGC are trained and optimized in a unified framework, so the learned node representation contains clustering-oriented messages.
arXiv Detail & Related papers (2022-06-16T03:17:01Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.