A Lightweight Edge-CNN-Transformer Model for Detecting Coordinated Cyber and Digital Twin Attacks in Cooperative Smart Farming
- URL: http://arxiv.org/abs/2411.14729v1
- Date: Fri, 22 Nov 2024 04:52:13 GMT
- Title: A Lightweight Edge-CNN-Transformer Model for Detecting Coordinated Cyber and Digital Twin Attacks in Cooperative Smart Farming
- Authors: Lopamudra Praharaj, Deepti Gupta, Maanak Gupta,
- Abstract summary: A cyberattack on one farm can have widespread consequences, affecting the targeted farm as well as all member farms within a cooperative.
This research proposes a novel and secure architecture for Cooperative Smart Farming (CSF)
We propose a CNN-Transformer-based network anomaly detection model, specifically designed for deployment at the edge.
- Score: 0.0
- License:
- Abstract: The agriculture sector is increasingly adopting innovative technologies to meet the growing food demands of the global population. To optimize resource utilization and minimize crop losses, farmers are joining cooperatives to share their data and resources among member farms. However, while farmers benefit from this data sharing and interconnection, it exposes them to cybersecurity threats and privacy concerns. A cyberattack on one farm can have widespread consequences, affecting the targeted farm as well as all member farms within a cooperative. In this research, we address existing gaps by proposing a novel and secure architecture for Cooperative Smart Farming (CSF). First, we highlight the role of edge-based DTs in enhancing the efficiency and resilience of agricultural operations. To validate this, we develop a test environment for CSF, implementing various cyberattacks on both the DTs and their physical counterparts using different attack vectors. We collect two smart farming network datasets to identify potential threats. After identifying these threats, we focus on preventing the transmission of malicious data from compromised farms to the central cloud server. To achieve this, we propose a CNN-Transformer-based network anomaly detection model, specifically designed for deployment at the edge. As a proof of concept, we implement this model and evaluate its performance by varying the number of encoder layers. Additionally, we apply Post-Quantization to compress the model and demonstrate the impact of compression on its performance in edge environments. Finally, we compare the model's performance with traditional machine learning approaches to assess its overall effectiveness.
Related papers
- Interpretable Cyber Threat Detection for Enterprise Industrial Networks: A Computational Design Science Approach [1.935143126104097]
We use IS computational design science paradigm to develop a two-stage cyber threat detection system for enterprise-level IS.
The first stage generates synthetic industrial network data using a modified generative adversarial network.
The second stage develops a novel bidirectional gated recurrent unit and a modified attention mechanism for effective threat detection.
arXiv Detail & Related papers (2024-09-04T19:54:28Z) - FedRobo: Federated Learning Driven Autonomous Inter Robots Communication For Optimal Chemical Sprays [0.0]
Federated learning enables robots to learn from each other's experiences without relying on centralized data collection.
A communication protocol is designed to optimize chemical spray applications.
The proposed cluster-based federated learning approach also effectively reduces the computational load on the global server.
arXiv Detail & Related papers (2024-08-10T00:32:39Z) - Leakage-Resilient and Carbon-Neutral Aggregation Featuring the Federated AI-enabled Critical Infrastructure [42.688679691088204]
We propose a leakage-resilient, communication-efficient, and carbon-neutral approach for ACI networks.
We show that CDPA can reduce communication cost by half while preserving model utility.
We highlight existing benchmarks that generate 2.6x to over 100x more carbon emissions than CDPA.
arXiv Detail & Related papers (2024-05-24T06:35:09Z) - Enhancing Critical Infrastructure Cybersecurity: Collaborative DNN Synthesis in the Cloud Continuum [0.0]
Researchers are exploring the integration of IoT and the cloud continuum, together with AI, to enhance the cost-effectiveness and efficiency of critical infrastructure (CI) systems.
This integration, however, increases susceptibility of CI systems to cyberattacks, potentially leading to disruptions like power outages, oil spills, or even a nuclear mishap.
We propose an innovative approach that utilizes trained edge cloud models to synthesize central cloud models.
arXiv Detail & Related papers (2024-05-23T00:36:45Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - Fed-urlBERT: Client-side Lightweight Federated Transformers for URL Threat Analysis [6.552094912099549]
Federated URL pre-trained model designed to address both privacy concerns and the need for cross-domain collaboration in cybersecurity.
Our appraoch achieves performance comparable to centralized model under both independently and identically distributed (IID) and two non-IID data scenarios.
arXiv Detail & Related papers (2023-12-06T17:31:16Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.