論文の概要: Resolution-Agnostic Transformer-based Climate Downscaling
- arxiv url: http://arxiv.org/abs/2411.14774v2
- Date: Wed, 27 Nov 2024 00:55:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:19.612336
- Title: Resolution-Agnostic Transformer-based Climate Downscaling
- Title(参考訳): 分解能非依存変圧器による気候下降
- Authors: Declan Curran, Hira Saleem, Sanaa Hobeichi, Flora Salim,
- Abstract要約: 本研究では,地球ビジョントランス(Earth ViT)モデルを用いたコスト効率の低下手法を提案する。
追加のトレーニングなしではうまく機能し、さまざまな解像度で一般化する能力を示している。
最終的に、この手法は、主要な気候変数の潜在的な将来の変化をより包括的に見積もることができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Understanding future weather changes at regional and local scales is crucial for planning and decision-making, particularly in the context of extreme weather events, as well as for broader applications in agriculture, insurance, and infrastructure development. However, the computational cost of downscaling Global Climate Models (GCMs) to the fine resolutions needed for such applications presents a significant barrier. Drawing on advancements in weather forecasting models, this study introduces a cost-efficient downscaling method using a pretrained Earth Vision Transformer (Earth ViT) model. Initially trained on ERA5 data to downscale from 50 km to 25 km resolution, the model is then tested on the higher resolution BARRA-SY dataset at a 3 km resolution. Remarkably, it performs well without additional training, demonstrating its ability to generalize across different resolutions. This approach holds promise for generating large ensembles of regional climate simulations by downscaling GCMs with varying input resolutions without incurring additional training costs. Ultimately, this method could provide more comprehensive estimates of potential future changes in key climate variables, aiding in effective planning for extreme weather events and climate change adaptation strategies.
- Abstract(参考訳): 地域や地域規模における将来の気象変化を理解することは、特に極端な気象イベントの文脈における計画と意思決定、さらには農業、保険、インフラ開発における幅広い応用に不可欠である。
しかし,グローバル気候モデル (GCM) のスケールダウンによる計算コストは,そのようなアプリケーションに必要な細かな分解能に大きく影響している。
本研究では、気象予報モデルの進展を反映して、事前訓練された地球ビジョン変換器(Earth ViT)モデルを用いたコスト効率の低いダウンスケーリング手法を提案する。
当初、50kmから25kmの解像度にダウンスケールするためにERA5データをトレーニングし、高解像度のBARRA-SYデータセットを3kmの解像度でテストした。
注目すべきは、追加のトレーニングなしでうまく機能し、異なる解像度をまたいで一般化する能力を示すことだ。
このアプローチは、追加のトレーニングコストを発生させることなく、入力解像度の異なるGCMをダウンスケールすることで、地域気候シミュレーションの大規模なアンサンブルを生成することを約束する。
究極的には、この手法は重要な気候変数の潜在的な将来の変化をより包括的に推定し、極端な気象イベントや気候変動適応戦略の効果的な計画を支援する可能性がある。
関連論文リスト
- Super Resolution On Global Weather Forecasts [0.1747623282473278]
グループは,グローバル気象予測の空間分解能を高めることにより,既存の深層学習に基づく予測手法の改善を目指している。
具体的には、大域的精度を1度から0.5度に高めることにより、グラフCast温度予測における超解像(SR)の実行に関心がある。
論文 参考訳(メタデータ) (2024-09-17T19:07:13Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Machine learning emulation of precipitation from km-scale regional climate simulations using a diffusion model [22.255982502297197]
高解像度の気候シミュレーションは、気候変動の影響を理解し、適応策を計画するのに有用である。
CPMGEMは,イングランドやウェールズの高分解能モデルからの降水シミュレーションをはるかに低コストでエミュレートするために,生成機械学習モデルの新たな応用である拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-07-19T09:42:20Z) - Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
我々は高解像度データへの共通依存から逸脱する新しい戦略を導入する。
本稿では,データ拡張と処理に対する新たなアプローチとして,変数の追加による従来のアプローチの改善について述べる。
その結果, 解像度が低いにもかかわらず, 提案手法は大気条件の予測にかなり精度が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-13T03:01:22Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Self Supervised Vision for Climate Downscaling [16.407155686685666]
将来の気候変動研究の予測は、地球の気候システムをシミュレートするコンピュータモデルであるアース・システム・モデル(Earth System Models, ESMs)に基づいている。
ESMは様々な物理システムを統合するためのフレームワークを提供するが、その出力は高解像度シミュレーションの実行とアーカイブに必要な膨大な計算資源に縛られている。
本研究では,モデル最適化に高分解能基底真理データを必要としないESMシミュレーションデータをダウンスケールするディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2024-01-09T10:20:49Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
統計的ダウンスケーリングのための補助的情報時空間ニューラルアーキテクチャを提案する。
現在の研究では、世界で最も気候的に多様化したインドにおいて、ESMの出力から1.15度 (115 km) から0.25度 (25 km) まで、毎日降水量のダウンスケーリングを行っている。
論文 参考訳(メタデータ) (2020-09-23T17:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。