論文の概要: Who Can Withstand Chat-Audio Attacks? An Evaluation Benchmark for Large Language Models
- arxiv url: http://arxiv.org/abs/2411.14842v1
- Date: Fri, 22 Nov 2024 10:30:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:02:47.055796
- Title: Who Can Withstand Chat-Audio Attacks? An Evaluation Benchmark for Large Language Models
- Title(参考訳): チャット・オーディオ攻撃に誰が耐えられるか? 大規模言語モデルの評価ベンチマーク
- Authors: Wanqi Yang, Yanda Li, Meng Fang, Yunchao Wei, Tianyi Zhou, Ling Chen,
- Abstract要約: アドリヤル音声攻撃は、音声に基づく人間と機械の相互作用において、大きな言語モデル(LLM)の増大に重大な脅威をもたらす。
本稿では,4種類の音声攻撃を含むChat-Audio Attacksベンチマークを紹介する。
Gemini-1.5-Pro や GPT-4o など,音声対話機能を備えた6つの最先端 LLM の評価を行った。
- 参考スコア(独自算出の注目度): 70.99768410765502
- License:
- Abstract: Adversarial audio attacks pose a significant threat to the growing use of large language models (LLMs) in voice-based human-machine interactions. While existing research has primarily focused on model-specific adversarial methods, real-world applications demand a more generalizable and universal approach to audio adversarial attacks. In this paper, we introduce the Chat-Audio Attacks (CAA) benchmark including four distinct types of audio attacks, which aims to explore the the vulnerabilities of LLMs to these audio attacks in conversational scenarios. To evaluate the robustness of LLMs, we propose three evaluation strategies: Standard Evaluation, utilizing traditional metrics to quantify model performance under attacks; GPT-4o-Based Evaluation, which simulates real-world conversational complexities; and Human Evaluation, offering insights into user perception and trust. We evaluate six state-of-the-art LLMs with voice interaction capabilities, including Gemini-1.5-Pro, GPT-4o, and others, using three distinct evaluation methods on the CAA benchmark. Our comprehensive analysis reveals the impact of four types of audio attacks on the performance of these models, demonstrating that GPT-4o exhibits the highest level of resilience.
- Abstract(参考訳): 敵対的音声攻撃は、音声に基づく人間と機械の相互作用において、大きな言語モデル(LLM)の増大に重大な脅威をもたらす。
既存の研究は主にモデル固有の敵対的手法に焦点を合わせてきたが、現実のアプリケーションはより汎用的で普遍的なアプローチを必要とする。
本稿では,4種類の音声攻撃を含むChat-Audio Attacks (CAA) ベンチマークを紹介する。
LLMのロバスト性を評価するために,攻撃下でのモデルパフォーマンスの定量化に従来の指標を利用する標準評価,現実世界の会話の複雑さをシミュレートするGPT-4oベース評価,ユーザ認識と信頼に関する洞察を提供するヒューマン評価という3つの評価戦略を提案する。
我々は,CAAベンチマークにおいて,Gemini-1.5-Pro,GPT-4oなどの音声対話機能を備えた6つの最先端LCMを3つの異なる評価手法を用いて評価した。
包括的分析により,4種類の音声攻撃がこれらのモデルの性能に与える影響が明らかとなり,GPT-4oが最も高いレジリエンスを示した。
関連論文リスト
- A Suite for Acoustic Language Model Evaluation [20.802090523583196]
SALMonは、背景雑音、感情、話者識別、室内インパルス応答を含む新しい評価スイートである。
SALMon 上で複数の言語モデルを評価し,評価手法の長所と短所を強調した。
論文 参考訳(メタデータ) (2024-09-11T17:34:52Z) - Enhancing Audio-Language Models through Self-Supervised Post-Training with Text-Audio Pairs [3.8300818830608345]
音声とテキストのマルチモーダルコントラスト学習戦略が急速に注目されている。
これらのモデルが自然言語や時間的関係を理解する能力は、いまだに未探索でオープンな研究分野である。
本稿では,時間的インスツルメント手法であるTeminalを用いて,時間的理解を伴うマルチモーダルALMを,従来の音声言語タスクの能力を損なうことなく装備することを提案する。
論文 参考訳(メタデータ) (2024-08-17T18:53:17Z) - KGPA: Robustness Evaluation for Large Language Models via Cross-Domain Knowledge Graphs [5.798411590796167]
本稿では,敵対的攻撃シナリオ下での大規模言語モデルの堅牢性を体系的に評価する枠組みを提案する。
筆者らの枠組みは知識グラフの三つ子から独自のプロンプトを生成し,毒殺によって敵のプロンプトを生成する。
GPT-4-turbo > GPT-4o > GPT-3.5-turbo としてChatGPTファミリーの対角的ロバスト性が評価された。
論文 参考訳(メタデータ) (2024-06-16T04:48:43Z) - AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension [95.8442896569132]
AIR-Benchは,Large Audio-Language Models (LALM) の様々な種類の音声信号を理解し,テキスト形式で人間と対話する能力を評価する最初のベンチマークである。
その結果, GPT-4による評価と人間による評価との間には高い一貫性が認められた。
論文 参考訳(メタデータ) (2024-02-12T15:41:22Z) - AV-SUPERB: A Multi-Task Evaluation Benchmark for Audio-Visual Representation Models [92.92233932921741]
AV-SUPERBベンチマークは,音声・視覚・バイモーダル融合表現の汎用的評価を可能にする。
我々は,最近の5つの自己教師型モデルを評価し,これらのモデルがすべてのタスクに一般化されないことを示す。
我々は,AudioSetを用いた中間タスクの微調整と音声イベント分類によって表現が改善されることを実証した。
論文 参考訳(メタデータ) (2023-09-19T17:35:16Z) - Membership Inference Attacks Against Self-supervised Speech Models [62.73937175625953]
連続音声における自己教師付き学習(SSL)が注目されている。
ブラックボックスアクセス下でのMIA(Commanship Inference Attacks)を用いたSSL音声モデルに対する最初のプライバシ分析を行う。
論文 参考訳(メタデータ) (2021-11-09T13:00:24Z) - Scenario Aware Speech Recognition: Advancements for Apollo Fearless
Steps & CHiME-4 Corpora [70.46867541361982]
本稿では、TRILLと呼ばれる三重項損失に基づく自己監督基準で訓練された一般的な非意味的音声表現について考察する。
我々は、Fearless Stepsの開発と評価のために、+5.42%と+3.18%の相対的なWER改善を観察した。
論文 参考訳(メタデータ) (2021-09-23T00:43:32Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。