Leveraging Hierarchical Prototypes as the Verbalizer for Implicit Discourse Relation Recognition
- URL: http://arxiv.org/abs/2411.14880v1
- Date: Fri, 22 Nov 2024 12:01:04 GMT
- Title: Leveraging Hierarchical Prototypes as the Verbalizer for Implicit Discourse Relation Recognition
- Authors: Wanqiu Long, Bonnie Webber,
- Abstract summary: Implicit discourse relation recognition involves determining relationships between spans of text that are not linked by an explicit discourse connective.
Previous work solely relied on manual verbalizers for implicit discourse relation recognition.
We leverage the prototypes that capture certain class-level semantic features and the hierarchical label structure for different classes as the verbalizer.
- Score: 7.149359970799236
- License:
- Abstract: Implicit discourse relation recognition involves determining relationships that hold between spans of text that are not linked by an explicit discourse connective. In recent years, the pre-train, prompt, and predict paradigm has emerged as a promising approach for tackling this task. However, previous work solely relied on manual verbalizers for implicit discourse relation recognition, which suffer from issues of ambiguity and even incorrectness. To overcome these limitations, we leverage the prototypes that capture certain class-level semantic features and the hierarchical label structure for different classes as the verbalizer. We show that our method improves on competitive baselines. Besides, our proposed approach can be extended to enable zero-shot cross-lingual learning, facilitating the recognition of discourse relations in languages with scarce resources. These advancement validate the practicality and versatility of our approach in addressing the issues of implicit discourse relation recognition across different languages.
Related papers
- Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - Pixel Sentence Representation Learning [67.4775296225521]
In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process.
We employ visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to be perceived as continuous.
Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision.
arXiv Detail & Related papers (2024-02-13T02:46:45Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
We propose a Prompt-based Logical Semantics Enhancement (PLSE) method for Implicit Discourse Relation Recognition (IDRR)
Our method seamlessly injects knowledge relevant to discourse relation into pre-trained language models through prompt-based connective prediction.
Experimental results on PDTB 2.0 and CoNLL16 datasets demonstrate that our method achieves outstanding and consistent performance against the current state-of-the-art models.
arXiv Detail & Related papers (2023-11-01T08:38:08Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
We pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying.
To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model.
arXiv Detail & Related papers (2023-05-24T14:06:27Z) - Towards Unsupervised Recognition of Token-level Semantic Differences in
Related Documents [61.63208012250885]
We formulate recognizing semantic differences as a token-level regression task.
We study three unsupervised approaches that rely on a masked language model.
Our results show that an approach based on word alignment and sentence-level contrastive learning has a robust correlation to gold labels.
arXiv Detail & Related papers (2023-05-22T17:58:04Z) - CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class
Classification [57.62886091828512]
We propose a brand-new prefix-tuning method, Counterfactual Contrastive Prefix-tuning (CCPrefix) for many-class classification.
Basically, an instance-dependent soft prefix, derived from fact-counterfactual pairs in the label space, is leveraged to complement the language verbalizers in many-class classification.
arXiv Detail & Related papers (2022-11-11T03:45:59Z) - Prompt-based Connective Prediction Method for Fine-grained Implicit
Discourse Relation Recognition [34.02125358302028]
We propose a novel Prompt-based Connective Prediction (PCP) method for IDRR.
Our method instructs large-scale pre-trained models to use knowledge relevant to discourse relation.
Experimental results show that our method surpasses the current state-of-the-art model.
arXiv Detail & Related papers (2022-10-13T13:47:13Z) - Keywords and Instances: A Hierarchical Contrastive Learning Framework
Unifying Hybrid Granularities for Text Generation [59.01297461453444]
We propose a hierarchical contrastive learning mechanism, which can unify hybrid granularities semantic meaning in the input text.
Experiments demonstrate that our model outperforms competitive baselines on paraphrasing, dialogue generation, and storytelling tasks.
arXiv Detail & Related papers (2022-05-26T13:26:03Z) - Augmenting BERT-style Models with Predictive Coding to Improve
Discourse-level Representations [20.855686009404703]
We propose to use ideas from predictive coding theory to augment BERT-style language models with a mechanism that allows them to learn discourse-level representations.
Our proposed approach is able to predict future sentences using explicit top-down connections that operate at the intermediate layers of the network.
arXiv Detail & Related papers (2021-09-10T00:45:28Z) - Let's be explicit about that: Distant supervision for implicit discourse
relation classification via connective prediction [0.0]
In implicit discourse relation classification, we want to predict the relation between adjacent sentences in the absence of any overt discourse connectives.
We sidestep the lack of data through explicitation of implicit relations to reduce the task to two sub-problems: language modeling and explicit discourse relation classification.
Our experimental results show that this method can even marginally outperform the state-of-the-art, in spite of being much simpler than alternative models of comparable performance.
arXiv Detail & Related papers (2021-06-06T17:57:32Z) - Discourse Coherence, Reference Grounding and Goal Oriented Dialogue [15.766916122461922]
We argue for a new approach to realizing mixed-initiative human--computer referential communication.
We describe a simple dialogue system in a referential communication domain that accumulates constraints across discourse, interprets them using a learned probabilistic model, and plans clarification using reinforcement learning.
arXiv Detail & Related papers (2020-07-08T20:53:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.