Are vacuum fluctuations relevant in absorption dynamics?
- URL: http://arxiv.org/abs/2411.14898v1
- Date: Fri, 22 Nov 2024 12:41:12 GMT
- Title: Are vacuum fluctuations relevant in absorption dynamics?
- Authors: Pedro Sancho,
- Abstract summary: We analyze the consistency of that proposal with previous results in double spontaneous emission.
For the case of single absorption by two atoms, we present a test based on the time dependence of the subsequent spontaneous emission patterns.
- Score: 0.0
- License:
- Abstract: Vacuum fluctuations play a central role in spontaneous emission. Recently, it has been suggested that these fluctuations could also be fundamental in the absorption dynamics, breaking the superposition inherent to the linear quantum evolution. We analyze the consistency of that proposal with previous results in double spontaneous emission. Moreover, for the case of single absorption by two atoms, we present a test based on the time dependence of the subsequent spontaneous emission patterns, which can experimentally settle the question. This test is more viable than the original proposal, built on the Casimir effect. Our approach also allows for the comparison between the time scales of vacuum fluctuations as a disentangling mechanism and an emission trigger.
Related papers
- Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Probing Vacuum Field Fluctuations and Source Radiation Separately in
Space and Time [0.0]
Source radiation (radiation reaction) and vacuum-field fluctuations can be seen as two inseparable contributions to processes such as spontaneous emission.
We propose how they can be individually probed and their space-time structure revealed in electro-optic sampling experiments.
arXiv Detail & Related papers (2023-05-10T18:01:30Z) - Can we observe non-perturbative vacuum shifts in cavity QED? [0.0]
We show that confinement per se is not enough to result in substantial vacuum-induced corrections.
The presence of high-impedance modes, such as plasmons or engineered LC resonances, can drastically increase these effects.
It is at least in principle possible to access a regime where light-matter interactions become non-perturbative.
arXiv Detail & Related papers (2022-12-16T19:00:15Z) - Motion induced excitation and radiation from an atom facing a mirror [0.0]
We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion of a single neutral atom.
We compute the spontaneous emission rate of an oscillating atom that is initially in an excited state.
arXiv Detail & Related papers (2022-01-04T20:31:19Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Experimental Demonstration of Topological Charge Protection in Wigner
Current [3.093409936654924]
We reconstruct Wigner's current of quantum phase space dynamics for the first time.
We reveal the push-and-pull" associated with damping and diffusion due to the coupling of a squeezed vacuum state to its environment.
arXiv Detail & Related papers (2021-11-16T08:22:22Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Motion induced by asymmetric excitation of the quantum vacuum [62.997667081978825]
We study the effect of excitation of the quantum vacuum field induced by its coupling with a moving object.
In the present model, this excitation occurs asymmetrically on different sides of the object.
arXiv Detail & Related papers (2020-09-16T02:02:42Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.