Measuring decoherence due to quantum vacuum fluctuations
- URL: http://arxiv.org/abs/2501.17928v1
- Date: Wed, 29 Jan 2025 19:00:04 GMT
- Title: Measuring decoherence due to quantum vacuum fluctuations
- Authors: Anirudh Gundhi, Hendrik Ulbricht,
- Abstract summary: The interaction of a particle with vacuum fluctuations can lead to observable irreversible decoherence.
We compute the leading order decoherence effect for such a scenario and propose an experimental setup for its detection.
- Score: 0.0
- License:
- Abstract: The interaction of a particle with vacuum fluctuations -- which theoretically exist even in the complete absence of matter -- can lead to observable irreversible decoherence, if it were possible to switch on and off the particle charge suddenly. We compute the leading order decoherence effect for such a scenario and propose an experimental setup for its detection. Such a measurement might provide further insights into the nature of vacuum fluctuations and a novel precision test for the decoherence theory.
Related papers
- Are vacuum fluctuations relevant in absorption dynamics? [0.0]
We analyze the consistency of that proposal with previous results in double spontaneous emission.
For the case of single absorption by two atoms, we present a test based on the time dependence of the subsequent spontaneous emission patterns.
arXiv Detail & Related papers (2024-11-22T12:41:12Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Neutrino mixing and oscillations in quantum field theory: a
comprehensive introduction [0.0]
We show that the quantum field theoretical framework, where flavor vacuum is defined, permits to give a precise definition of flavor states.
We show that the gauge theory structure underlies the neutrino mixing phenomenon and that there exist entanglement between mixed neutrinos.
arXiv Detail & Related papers (2021-11-23T11:51:43Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Realizing an Unruh-DeWitt detector through electro-optic sampling of the
electromagnetic vacuum [0.0]
We present a new theoretical framework to describe the experimental advances in electro-optic detection of broadband quantum states.
We discuss the specific working regime of such processes, and the consequences through characterization of the quantum light involved in the detection.
arXiv Detail & Related papers (2021-03-26T10:04:07Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - On the effect of decoherence on quantum tunnelling [0.0]
The rate of decoherence is suggested to be examined indirectly, with minimal intrusions.
decoherence is understood here as a general process that does not involve any significant exchanges of energy.
It is shown that the effects on tunnelling of intrinsic decoherence and of decoherence due to unitary interactions with the environment are similar but not the same.
arXiv Detail & Related papers (2020-11-26T23:11:53Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.