Morph: A Motion-free Physics Optimization Framework for Human Motion Generation
- URL: http://arxiv.org/abs/2411.14951v2
- Date: Mon, 02 Dec 2024 12:38:39 GMT
- Title: Morph: A Motion-free Physics Optimization Framework for Human Motion Generation
- Authors: Zhuo Li, Mingshuang Luo, Ruibing Hou, Xin Zhao, Hao Liu, Hong Chang, Zimo Liu, Chen Li,
- Abstract summary: Our framework achieves state-of-the-art motion generation quality while improving physical plausibility drastically.
Experiments on text-to-motion and music-to-dance generation tasks demonstrate that our framework achieves state-of-the-art motion generation quality.
- Score: 25.51726849102517
- License:
- Abstract: Human motion generation plays a vital role in applications such as digital humans and humanoid robot control. However, most existing approaches disregard physics constraints, leading to the frequent production of physically implausible motions with pronounced artifacts such as floating and foot sliding. In this paper, we propose \textbf{Morph}, a \textbf{Mo}tion-f\textbf{r}ee \textbf{ph}ysics optimization framework, comprising a Motion Generator and a Motion Physics Refinement module, for enhancing physical plausibility without relying on costly real-world motion data. Specifically, the Motion Generator is responsible for providing large-scale synthetic motion data, while the Motion Physics Refinement Module utilizes these synthetic data to train a motion imitator within a physics simulator, enforcing physical constraints to project the noisy motions into a physically-plausible space. These physically refined motions, in turn, are used to fine-tune the Motion Generator, further enhancing its capability. Experiments on both text-to-motion and music-to-dance generation tasks demonstrate that our framework achieves state-of-the-art motion generation quality while improving physical plausibility drastically.
Related papers
- FlexMotion: Lightweight, Physics-Aware, and Controllable Human Motion Generation [12.60677181866807]
We propose a novel framework that leverages a computationally lightweight diffusion model operating in the latent space.
FlexMotion employs a multimodal pre-trained Transformer encoder-decoder, integrating joint locations, contact forces, joint actuations and muscle activations.
We evaluate FlexMotion on extended datasets and demonstrate its superior performance in terms of realism, physical plausibility, and controllability.
arXiv Detail & Related papers (2025-01-28T08:02:21Z) - A Plug-and-Play Physical Motion Restoration Approach for In-the-Wild High-Difficulty Motions [56.709280823844374]
We introduce a mask-based motion correction module (MCM) that leverages motion context and video mask to repair flawed motions.
We also propose a physics-based motion transfer module (PTM), which employs a pretrain and adapt approach for motion imitation.
Our approach is designed as a plug-and-play module to physically refine the video motion capture results, including high-difficulty in-the-wild motions.
arXiv Detail & Related papers (2024-12-23T08:26:00Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.
We translate high-level user requests into detailed, semi-dense motion prompts.
We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - MotionBank: A Large-scale Video Motion Benchmark with Disentangled Rule-based Annotations [85.85596165472663]
We build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions.
Our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding.
arXiv Detail & Related papers (2024-10-17T17:31:24Z) - Sitcom-Crafter: A Plot-Driven Human Motion Generation System in 3D Scenes [90.39860012099393]
Sitcom-Crafter is a system for human motion generation in 3D space.
Central to the function generation modules is our novel 3D scene-aware human-human interaction module.
Augmentation modules encompass plot comprehension for command generation, motion synchronization for seamless integration of different motion types.
arXiv Detail & Related papers (2024-10-14T17:56:19Z) - ReinDiffuse: Crafting Physically Plausible Motions with Reinforced Diffusion Model [9.525806425270428]
We present emphReinDiffuse that combines reinforcement learning with motion diffusion model to generate physically credible human motions.
Our method adapts Motion Diffusion Model to output a parameterized distribution of actions, making them compatible with reinforcement learning paradigms.
Our approach outperforms existing state-of-the-art models on two major datasets, HumanML3D and KIT-ML.
arXiv Detail & Related papers (2024-10-09T16:24:11Z) - DROP: Dynamics Responses from Human Motion Prior and Projective Dynamics [21.00283279991885]
We introduce DROP, a novel framework for modeling Dynamics Responses of humans using generative mOtion prior and Projective dynamics.
We conduct extensive evaluations of our model across different motion tasks and various physical perturbations, demonstrating the scalability and diversity of responses.
arXiv Detail & Related papers (2023-09-24T20:25:59Z) - PhysDiff: Physics-Guided Human Motion Diffusion Model [101.1823574561535]
Existing motion diffusion models largely disregard the laws of physics in the diffusion process.
PhysDiff incorporates physical constraints into the diffusion process.
Our approach achieves state-of-the-art motion quality and improves physical plausibility drastically.
arXiv Detail & Related papers (2022-12-05T18:59:52Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
Modern deep learning based motion synthesis approaches barely consider the physical plausibility of synthesized motions.
We propose a system Skeleton2Humanoid'' which performs physics-oriented motion correction at test time.
Experiments on the challenging LaFAN1 dataset show our system can outperform prior methods significantly in terms of both physical plausibility and accuracy.
arXiv Detail & Related papers (2022-10-09T16:15:34Z) - MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model [35.32967411186489]
MotionDiffuse is a diffusion model-based text-driven motion generation framework.
It excels at modeling complicated data distribution and generating vivid motion sequences.
It responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts.
arXiv Detail & Related papers (2022-08-31T17:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.