Evaluating Vision Transformer Models for Visual Quality Control in Industrial Manufacturing
- URL: http://arxiv.org/abs/2411.14953v1
- Date: Fri, 22 Nov 2024 14:12:35 GMT
- Title: Evaluating Vision Transformer Models for Visual Quality Control in Industrial Manufacturing
- Authors: Miriam Alber, Christoph Hönes, Patrick Baier,
- Abstract summary: One of the most promising use-cases for machine learning in industrial manufacturing is the early detection of defective products.
We evaluate current vision transformer models together with anomaly detection methods.
We give guidelines for choosing a suitable model architecture for a quality control system in practice.
- Score: 0.0
- License:
- Abstract: One of the most promising use-cases for machine learning in industrial manufacturing is the early detection of defective products using a quality control system. Such a system can save costs and reduces human errors due to the monotonous nature of visual inspections. Today, a rich body of research exists which employs machine learning methods to identify rare defective products in unbalanced visual quality control datasets. These methods typically rely on two components: A visual backbone to capture the features of the input image and an anomaly detection algorithm that decides if these features are within an expected distribution. With the rise of transformer architecture as visual backbones of choice, there exists now a great variety of different combinations of these two components, ranging all along the trade-off between detection quality and inference time. Facing this variety, practitioners in the field often have to spend a considerable amount of time on researching the right combination for their use-case at hand. Our contribution is to help practitioners with this choice by reviewing and evaluating current vision transformer models together with anomaly detection methods. For this, we chose SotA models of both disciplines, combined them and evaluated them towards the goal of having small, fast and efficient anomaly detection models suitable for industrial manufacturing. We evaluated the results of our experiments on the well-known MVTecAD and BTAD datasets. Moreover, we give guidelines for choosing a suitable model architecture for a quality control system in practice, considering given use-case and hardware constraints.
Related papers
- Automated Detection of Defects on Metal Surfaces using Vision Transformers [1.6381055567716192]
The study utilizes deep learning techniques to develop a model for detecting metal surface defects using Vision Transformers (ViTs)
The proposed model focuses on the classification and localization of defects using a ViT for feature extraction.
Experimental results show that it can be utilized in the process of automated defects detection, improve operational efficiency, and reduce errors in metal manufacturing.
arXiv Detail & Related papers (2024-10-06T10:29:45Z) - A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series [17.08674819906415]
We introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI.
Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale.
arXiv Detail & Related papers (2024-05-06T07:44:07Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
Latest methods for visual counterfactual explanations (VCE) harness the power of deep generative models to synthesize new examples of high-dimensional images of impressive quality.
It is currently difficult to compare the performance of these VCE methods as the evaluation procedures largely vary and often boil down to visual inspection of individual examples and small scale user studies.
We propose a framework for systematic, quantitative evaluation of the VCE methods and a minimal set of metrics to be used.
arXiv Detail & Related papers (2023-08-11T12:22:37Z) - Component-aware anomaly detection framework for adjustable and logical
industrial visual inspection [4.444590838289701]
We propose a novel component-aware anomaly detection framework (ComAD)
It can simultaneously achieve adjustable and logical anomaly detection for industrial scenarios.
Our framework achieves state-of-the-art performance on image-level logical anomaly detection.
arXiv Detail & Related papers (2023-05-15T10:18:52Z) - Recognition of Defective Mineral Wool Using Pruned ResNet Models [88.24021148516319]
We developed a visual quality control system for mineral wool.
X-ray images of wool specimens were collected to create a training set of defective and non-defective samples.
We obtained a model with more than 98% accuracy, which in comparison to the current procedure used at the company, it can recognize 20% more defective products.
arXiv Detail & Related papers (2022-11-01T13:58:02Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
This paper discloses a novel visual inspection system for liquid crystal display (LCD), which is currently a dominant type in the FPD industry.
System is based on two cornerstones: robust/high-performance defect recognition model and cognitive visual inspection service architecture.
arXiv Detail & Related papers (2021-01-11T08:14:35Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.