NeRF-Based defect detection
- URL: http://arxiv.org/abs/2504.00270v1
- Date: Mon, 31 Mar 2025 22:27:51 GMT
- Title: NeRF-Based defect detection
- Authors: Tianqi, Ding, Dawei Xiang, Yijiashun Qi, Ze Yang, Zunduo Zhao, Tianyao Sun, Pengbin Feng, Haoyu Wang,
- Abstract summary: This paper introduces an automated defect detection framework built on Neural Radiance Fields (NeRF) and the concept of digital twins.<n>The system utilizes UAVs to capture images and reconstruct 3D models of machinery, producing both a standard reference model and a current-state model for comparison.
- Score: 6.72800891299482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of industrial automation has highlighted the need for precise and efficient defect detection in large-scale machinery. Traditional inspection techniques, involving manual procedures such as scaling tall structures for visual evaluation, are labor-intensive, subjective, and often hazardous. To overcome these challenges, this paper introduces an automated defect detection framework built on Neural Radiance Fields (NeRF) and the concept of digital twins. The system utilizes UAVs to capture images and reconstruct 3D models of machinery, producing both a standard reference model and a current-state model for comparison. Alignment of the models is achieved through the Iterative Closest Point (ICP) algorithm, enabling precise point cloud analysis to detect deviations that signify potential defects. By eliminating manual inspection, this method improves accuracy, enhances operational safety, and offers a scalable solution for defect detection. The proposed approach demonstrates great promise for reliable and efficient industrial applications.
Related papers
- Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
Anomaly detection plays a crucial role in quality control for industrial applications.<n>Existing methods attempt to address domain shifts by training generalizable models.<n>Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
arXiv Detail & Related papers (2025-03-19T05:25:52Z) - Defect Detection Network In PCB Circuit Devices Based on GAN Enhanced YOLOv11 [1.6775954077761863]
This study proposes an advanced method for surface defect detection in printed circuit boards (PCBs) using an improved YOLOv11 model enhanced with a generative adversarial network (GAN)<n>The approach focuses on identifying six common defect types: missing hole, rat bite, open circuit, short circuit, burr, and virtual welding.<n>The enhanced YOLOv11 model is evaluated on a PCB defect dataset, demonstrating significant improvements in accuracy, recall, and robustness.
arXiv Detail & Related papers (2025-01-12T17:26:24Z) - Automatic Prompt Generation and Grounding Object Detection for Zero-Shot Image Anomaly Detection [17.06832015516288]
We propose a zero-shot training-free approach for automated industrial image anomaly detection using a multimodal machine learning pipeline.<n>Our proposed model enables efficient, scalable, and objective quality control in industrial manufacturing settings.
arXiv Detail & Related papers (2024-11-28T15:42:32Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - Automated Detection of Defects on Metal Surfaces using Vision Transformers [1.6381055567716192]
The study utilizes deep learning techniques to develop a model for detecting metal surface defects using Vision Transformers (ViTs)
The proposed model focuses on the classification and localization of defects using a ViT for feature extraction.
Experimental results show that it can be utilized in the process of automated defects detection, improve operational efficiency, and reduce errors in metal manufacturing.
arXiv Detail & Related papers (2024-10-06T10:29:45Z) - An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
Anomaly detection is critical for the secure and reliable operation of industrial control systems.
This paper presents a novel deep generative model to meet this need.
arXiv Detail & Related papers (2024-05-03T23:58:27Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - Representing Timed Automata and Timing Anomalies of Cyber-Physical
Production Systems in Knowledge Graphs [51.98400002538092]
This paper aims to improve model-based anomaly detection in CPPS by combining the learned timed automaton with a formal knowledge graph about the system.
Both the model and the detected anomalies are described in the knowledge graph in order to allow operators an easier interpretation of the model and the detected anomalies.
arXiv Detail & Related papers (2023-08-25T15:25:57Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
This paper discloses a novel visual inspection system for liquid crystal display (LCD), which is currently a dominant type in the FPD industry.
System is based on two cornerstones: robust/high-performance defect recognition model and cognitive visual inspection service architecture.
arXiv Detail & Related papers (2021-01-11T08:14:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.