Adaptive Group Robust Ensemble Knowledge Distillation
- URL: http://arxiv.org/abs/2411.14984v1
- Date: Fri, 22 Nov 2024 14:44:51 GMT
- Title: Adaptive Group Robust Ensemble Knowledge Distillation
- Authors: Patrik Kenfack, Ulrich Aïvodji, Samira Ebrahimi Kahou,
- Abstract summary: We propose Adaptive Group Robust Ensemble Knowledge Distillation (AGRE-KD) to ensure that the student model receives knowledge beneficial for unknown underrepresented subgroups.
Our method selectively chooses teachers whose knowledge would better improve the worst-performing subgroups by upweighting the teachers with gradient directions deviating from the biased model.
- Score: 6.4989916051093815
- License:
- Abstract: Neural networks can learn spurious correlations in the data, often leading to performance disparity for underrepresented subgroups. Studies have demonstrated that the disparity is amplified when knowledge is distilled from a complex teacher model to a relatively "simple" student model. Prior work has shown that ensemble deep learning methods can improve the performance of the worst-case subgroups; however, it is unclear if this advantage carries over when distilling knowledge from an ensemble of teachers, especially when the teacher models are debiased. This study demonstrates that traditional ensemble knowledge distillation can significantly drop the performance of the worst-case subgroups in the distilled student model even when the teacher models are debiased. To overcome this, we propose Adaptive Group Robust Ensemble Knowledge Distillation (AGRE-KD), a simple ensembling strategy to ensure that the student model receives knowledge beneficial for unknown underrepresented subgroups. Leveraging an additional biased model, our method selectively chooses teachers whose knowledge would better improve the worst-performing subgroups by upweighting the teachers with gradient directions deviating from the biased model. Our experiments on several datasets demonstrate the superiority of the proposed ensemble distillation technique and show that it can even outperform classic model ensembles based on majority voting.
Related papers
- Fair Distillation: Teaching Fairness from Biased Teachers in Medical Imaging [16.599189934420885]
We propose the Fair Distillation (FairDi) method to address fairness concerns in deep learning.
We show that FairDi achieves significant gains in both overall and group-specific accuracy, along with improved fairness, compared to existing methods.
FairDi is adaptable to various medical tasks, such as classification and segmentation, and provides an effective solution for equitable model performance.
arXiv Detail & Related papers (2024-11-18T16:50:34Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - The Group Robustness is in the Details: Revisiting Finetuning under Spurious Correlations [8.844894807922902]
Modern machine learning models are prone to over-reliance on spurious correlations.
In this paper, we identify surprising and nuanced behavior of finetuned models on worst-group accuracy.
Our results show more nuanced interactions of modern finetuned models with group robustness than was previously known.
arXiv Detail & Related papers (2024-07-19T00:34:03Z) - Unbiased Knowledge Distillation for Recommendation [66.82575287129728]
Knowledge distillation (KD) has been applied in recommender systems (RS) to reduce inference latency.
Traditional solutions first train a full teacher model from the training data, and then transfer its knowledge to supervise the learning of a compact student model.
We find such a standard distillation paradigm would incur serious bias issue -- popular items are more heavily recommended after the distillation.
arXiv Detail & Related papers (2022-11-27T05:14:03Z) - Efficient Knowledge Distillation from Model Checkpoints [36.329429655242535]
We show that a weak snapshot ensemble of several intermediate models from a same training trajectory can outperform a strong ensemble of independently trained and fully converged models.
We propose an optimal intermediate teacher selection algorithm based on maximizing the total task-related mutual information.
arXiv Detail & Related papers (2022-10-12T17:55:30Z) - Unified and Effective Ensemble Knowledge Distillation [92.67156911466397]
Ensemble knowledge distillation can extract knowledge from multiple teacher models and encode it into a single student model.
Many existing methods learn and distill the student model on labeled data only.
We propose a unified and effective ensemble knowledge distillation method that distills a single student model from an ensemble of teacher models on both labeled and unlabeled data.
arXiv Detail & Related papers (2022-04-01T16:15:39Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
We show that knowledge distillation can be used directly to boost the performance of state-of-the-art models in adversarial robustness.
We present Adversarial Knowledge Distillation (AKD), a new framework to improve a model's robust performance.
arXiv Detail & Related papers (2022-03-14T15:02:13Z) - Anomaly Detection via Reverse Distillation from One-Class Embedding [2.715884199292287]
We propose a novel T-S model consisting of a teacher encoder and a student decoder.
Instead of receiving raw images directly, the student network takes teacher model's one-class embedding as input.
In addition, we introduce a trainable one-class bottleneck embedding module in our T-S model.
arXiv Detail & Related papers (2022-01-26T01:48:37Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Teacher's pet: understanding and mitigating biases in distillation [61.44867470297283]
Several works have shown that distillation significantly boosts the student's overall performance.
However, are these gains uniform across all data subgroups?
We show that distillation can harm performance on certain subgroups.
We present techniques which soften the teacher influence for subgroups where it is less reliable.
arXiv Detail & Related papers (2021-06-19T13:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.