論文の概要: On Multi-Agent Inverse Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2411.15046v1
- Date: Fri, 22 Nov 2024 16:31:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 18:36:31.437795
- Title: On Multi-Agent Inverse Reinforcement Learning
- Title(参考訳): マルチエージェント逆強化学習について
- Authors: Till Freihaut, Giorgia Ramponi,
- Abstract要約: Inverse Reinforcement Learning (IRL) フレームワークを多エージェント設定に拡張し、Nash Equilibrium (NE) ポリシーに従うエージェントを観察する。
本稿では,現実的な報酬セットを明示的に評価し,移行ダイナミクスや専門家の行動が報酬にどのように影響するかを推定する。
- 参考スコア(独自算出の注目度): 8.284137254112848
- License:
- Abstract: In multi-agent systems, the agent behavior is highly influenced by its utility function, as these utilities shape both individual goals as well as interactions with the other agents. Inverse Reinforcement Learning (IRL) is a well-established approach to inferring the utility function by observing an expert behavior within a given environment. In this paper, we extend the IRL framework to the multi-agent setting, assuming to observe agents who are following Nash Equilibrium (NE) policies. We theoretically investigate the set of utilities that explain the behavior of NE experts. Specifically, we provide an explicit characterization of the feasible reward set and analyze how errors in estimating the transition dynamics and expert behavior impact the recovered rewards. Building on these findings, we provide the first sample complexity analysis for the multi-agent IRL problem. Finally, we provide a numerical evaluation of our theoretical results.
- Abstract(参考訳): 多エージェントシステムでは、エージェントの動作はそのユーティリティ機能に強く影響され、これらのユーティリティは個々の目標と他のエージェントとの相互作用の両方を形作る。
逆強化学習(英: Inverse Reinforcement Learning、IRL)とは、ある環境の中で専門家の振る舞いを観察することによって実用機能を推定する手法である。
本稿では、Nash Equilibrium(NE)ポリシーに従っているエージェントを観察するため、IRLフレームワークをマルチエージェント設定に拡張する。
NE専門家の行動を説明するユーティリティのセットを理論的に検討する。
具体的には、実現可能な報酬セットの明示的な評価と、遷移力学と専門家の振る舞いの誤差が、回収された報酬にどのように影響するかを解析する。
これらの結果に基づいて,マルチエージェントIRL問題に対する最初のサンプル複雑性解析を行った。
最後に,理論結果の数値的な評価を行う。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
反復的なステップレベルプロセスリファインメント(IPR)フレームワークは、エージェントトレーニングを強化するためのステップバイステップのガイダンスを提供する。
3つの複雑なエージェントタスクに関する我々の実験は、我々のフレームワークが様々な強力なベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2024-06-17T03:29:13Z) - Inverse Reinforcement Learning with Sub-optimal Experts [56.553106680769474]
与えられた専門家の集合と互換性のある報酬関数のクラスの理論的性質について検討する。
以上の結果から,複数の準最適専門家の存在が,相反する報酬の集合を著しく減少させる可能性が示唆された。
我々は,最適なエージェントの1つに十分近い準最適専門家のパフォーマンスレベルが最適である場合に,最小限の最適化を行う一様サンプリングアルゴリズムを解析する。
論文 参考訳(メタデータ) (2024-01-08T12:39:25Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
本稿では,エージェントの行動が他のエージェントの行動と一致しているかどうかを学習するための新しいアプローチを提案する。
マルチエージェント粒子, Google Research Football および StarCraft II Micromanagement を含む複数の環境における DCIR の評価を行った。
論文 参考訳(メタデータ) (2023-12-10T06:03:57Z) - Behavioral Analysis of Vision-and-Language Navigation Agents [21.31684388423088]
VLN(Vision-and-Language Navigation)エージェントは、周囲に基づいて行動の指示を下すことができる。
本研究では,エージェントの振る舞いを専門知識に基づいて研究する手法を開発した。
論文 参考訳(メタデータ) (2023-07-20T11:42:24Z) - Credit-cognisant reinforcement learning for multi-agent cooperation [0.0]
エージェントは,その行動が環境および共同エージェントに与える影響を知覚することができる。
これらの経験を操り、それらに含まれる報酬を構成することで、すべてのエージェントが受け取る報酬を同一のアクションシーケンスに含めることで、独立した深層Q-ラーニングの性能を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2022-11-18T09:00:25Z) - Beyond Rewards: a Hierarchical Perspective on Offline Multiagent
Behavioral Analysis [14.656957226255628]
本稿では,マルチエージェント領域における行動クラスタの発見のためのモデルに依存しない手法を提案する。
我々のフレームワークはエージェントの基盤となる学習アルゴリズムを前提とせず、潜伏状態やモデルへのアクセスを必要とせず、完全にオフラインで観察データを使って訓練することができる。
論文 参考訳(メタデータ) (2022-06-17T23:07:33Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
recurrent meta reinforcement learning (meta-rl)エージェントは「学習アルゴリズムの学習」を目的としてrecurrent neural network (rnn)を使用するエージェントである。
部分観測可能なマルコフ決定プロセス(POMDP)フレームワークを用いてメタRL問題を再構成することにより,これらのエージェントの内部動作機構を明らかにする。
論文 参考訳(メタデータ) (2021-04-29T20:34:39Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。