論文の概要: Locating the Leading Edge of Cultural Change
- arxiv url: http://arxiv.org/abs/2411.15068v1
- Date: Fri, 22 Nov 2024 16:56:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:03:15.903657
- Title: Locating the Leading Edge of Cultural Change
- Title(参考訳): 文化変革の最前線
- Authors: Sarah Griebel, Becca Cohen, Lucian Li, Jaihyun Park, Jiayu Liu, Jana Perkins, Ted Underwood,
- Abstract要約: 社会証拠との整合性は,文章が最上四分詞を通して表現される場合に最も強いことを示す。
これは、テキストの影響は、高いレベルのイノベーションを維持することよりも、最も前向きな瞬間に依存する可能性があることを示唆している。
- 参考スコア(独自算出の注目度): 7.259168459996675
- License:
- Abstract: Measures of textual similarity and divergence are increasingly used to study cultural change. But which measures align, in practice, with social evidence about change? We apply three different representations of text (topic models, document embeddings, and word-level perplexity) to three different corpora (literary studies, economics, and fiction). In every case, works by highly-cited authors and younger authors are textually ahead of the curve. We don't find clear evidence that one representation of text is to be preferred over the others. But alignment with social evidence is strongest when texts are represented through the top quartile of passages, suggesting that a text's impact may depend more on its most forward-looking moments than on sustaining a high level of innovation throughout.
- Abstract(参考訳): テキストの類似性やばらつきの尺度は、文化の変化を研究するためにますます使われてきている。
しかし、実際には、変化に関する社会的証拠とどの措置が一致するのか?
テキストの3つの異なる表現(トピックモデル、文書埋め込み、単語レベルの複雑度)を3つの異なるコーパス(文学研究、経済学、フィクション)に適用する。
いずれにせよ、高度に暗唱された著者や若い作家の著作物は、本文的にその曲線に先んじている。
テキストの1つの表現が他の表現よりも好ましいという明確な証拠は見つからない。
しかし、社会的なエビデンスとの整合性は、テキストが通過の最上位4分の1を通して表現されるときに最も強く、テキストの影響は、高いレベルのイノベーションを維持することよりも、最も前方に見える瞬間に依存する可能性があることを示唆している。
関連論文リスト
- RealCustom++: Representing Images as Real-Word for Real-Time Customization [80.04828124070418]
テキスト・ツー・イメージのカスタマイズは、テキストのセマンティクスと主題の外観の両方に合わせた新しいイメージを合成することを目的としている。
既存の作品は擬単語のパラダイムに従っており、特定の主題を擬単語として表現する。
そこで我々はRealCustom++と呼ばれる新しいリアルワードパラダイムを提案し,その代わりに課題を非コンフリクトなリアルワードとして表現する。
論文 参考訳(メタデータ) (2024-08-19T07:15:44Z) - RealCustom: Narrowing Real Text Word for Real-Time Open-Domain
Text-to-Image Customization [57.86083349873154]
テキスト・ツー・イメージのカスタマイズは、与えられた被験者に対してテキスト駆動の画像を合成することを目的としている。
既存の作品は擬似語パラダイム、すなわち、与えられた主題を擬似語として表現し、与えられたテキストで合成する。
我々は、RealCustomを初めて、被写体の影響を関連部分のみに正確に制限することで、制御性から類似性を解き放つことを提示する。
論文 参考訳(メタデータ) (2024-03-01T12:12:09Z) - Does Writing with Language Models Reduce Content Diversity? [16.22006159795341]
大規模言語モデル(LLM)は、モデルアシストによる協調的な記述の急増につながっている。
異なるユーザが同じモデルから提案を取り入れているため、生成したコンテンツの多様性が低下するリスクがある。
多様性指標のセットを開発し,InstructGPTによる記述は(GPT3ではなく)統計的に有意な多様性低下をもたらすことを示した。
論文 参考訳(メタデータ) (2023-09-11T02:16:47Z) - To Revise or Not to Revise: Learning to Detect Improvable Claims for
Argumentative Writing Support [20.905660642919052]
特定の修正が必要な議論的クレームを特定するための主な課題について検討する。
本稿では,リビジョン距離に基づく新しいサンプリング戦略を提案する。
文脈情報とドメイン知識を用いることで、予測結果をさらに改善できることを示す。
論文 参考訳(メタデータ) (2023-05-26T10:19:54Z) - Textual Stylistic Variation: Choices, Genres and Individuals [0.8057441774248633]
この章では、テキストコレクションのスタイリスティックな変動の統計処理のためのより情報的なターゲットメトリクスを論じている。
本章ではジャンルごとの変奏について論じ、個々の選択による変奏と対比する。
論文 参考訳(メタデータ) (2022-05-01T16:39:49Z) - CORE-Text: Improving Scene Text Detection with Contrastive Relational
Reasoning [65.57338873921168]
自然界におけるテキストインスタンスのローカライズは、コンピュータビジョンにおける根本的な課題であると考えられている。
本研究では,サブテキスト問題を定量的に解析し,シンプルで効果的な設計であるContrastive Relation(CORE)モジュールを提案する。
我々は、COREモジュールをMask R-CNNの2段階テキスト検出器に統合し、テキスト検出器CORE-Textを考案する。
論文 参考訳(メタデータ) (2021-12-14T16:22:25Z) - Fine-tuning GPT-3 for Russian Text Summarization [77.34726150561087]
本稿では,テキストを要約するruGPT3(ruGPT3)機能について紹介し,それに対応する人文要約を用いてロシア語ニュースのコーパスを微調整する。
得られたテキストを一連のメトリクスで評価し、アーキテクチャや損失関数に付加的な変更を加えることなく、我々のソリューションが最先端のモデルの性能を上回ることができることを示す。
論文 参考訳(メタデータ) (2021-08-07T19:01:40Z) - Readability Research: An Interdisciplinary Approach [62.03595526230364]
我々は,可読性研究の包括的枠組みである可読性研究のための強固な基盤を提供することを目指している。
可読性(Readability)とは、ページから読み手への情報フローに影響を与える視覚情報設計の側面を指す。
これらのアスペクトはオンデマンドで修正可能で、読み手がテキストから処理し、意味を導き出すのが簡単になる。
論文 参考訳(メタデータ) (2021-07-20T16:52:17Z) - Generalized Word Shift Graphs: A Method for Visualizing and Explaining
Pairwise Comparisons Between Texts [0.15833270109954134]
計算テキスト分析における一般的な課題は、2つのコーパスが単語頻度、感情、情報内容などの測定によってどのように異なるかを定量化することである。
一般化された単語シフトグラフを導入し、個々の単語が2つのテキスト間の変動にどのように貢献するかを意味的かつ解釈可能な要約を生成する。
このフレームワークは、相対周波数、辞書スコア、Kulback-LeiblerやJensen-Shannonの発散といったエントロピーに基づく測度など、テキストの比較によく使われる多くのアプローチを自然に含んでいることを示す。
論文 参考訳(メタデータ) (2020-08-05T17:27:11Z) - Improving Disentangled Text Representation Learning with
Information-Theoretic Guidance [99.68851329919858]
自然言語の独特な性質は、テキスト表現の分離をより困難にする。
情報理論にインスパイアされた本研究では,テキストの不整合表現を効果的に表現する手法を提案する。
条件付きテキスト生成とテキストスタイル転送の両方の実験は、不整合表現の質を実証する。
論文 参考訳(メタデータ) (2020-06-01T03:36:01Z) - Heaps' law and Heaps functions in tagged texts: Evidences of their
linguistic relevance [0.0]
英文学作品75ドルのコーパスにおいて,語彙サイズと文長の関係について検討した。
我々は、各テキストに沿って、各タグの新しい単語の進行的な出現を分析する。
論文 参考訳(メタデータ) (2020-01-07T17:05:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。