論文の概要: Leapfrog Latent Consistency Model (LLCM) for Medical Images Generation
- arxiv url: http://arxiv.org/abs/2411.15084v1
- Date: Fri, 22 Nov 2024 17:19:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:03:29.190958
- Title: Leapfrog Latent Consistency Model (LLCM) for Medical Images Generation
- Title(参考訳): 医用画像生成のためのLLCM(Leapfrog Latent Consistency Model)
- Authors: Lakshmikar R. Polamreddy, Kalyan Roy, Sheng-Han Yueh, Deepshikha Mahato, Shilpa Kuppili, Jialu Li, Youshan Zhang,
- Abstract要約: 本稿では,MedImgsデータセットに基づく再学習拡散モデルから抽出したLapfrog Latent Consistency Model (LLCM)を提案する。
本モデルは,医用画像の生成における最先端性能を示す。
実験の結果, 犬心X線画像の既存モデルよりも優れていた。
- 参考スコア(独自算出の注目度): 11.61653347709148
- License:
- Abstract: The scarcity of accessible medical image data poses a significant obstacle in effectively training deep learning models for medical diagnosis, as hospitals refrain from sharing their data due to privacy concerns. In response, we gathered a diverse dataset named MedImgs, which comprises over 250,127 images spanning 61 disease types and 159 classes of both humans and animals from open-source repositories. We propose a Leapfrog Latent Consistency Model (LLCM) that is distilled from a retrained diffusion model based on the collected MedImgs dataset, which enables our model to generate real-time high-resolution images. We formulate the reverse diffusion process as a probability flow ordinary differential equation (PF-ODE) and solve it in latent space using the Leapfrog algorithm. This formulation enables rapid sampling without necessitating additional iterations. Our model demonstrates state-of-the-art performance in generating medical images. Furthermore, our model can be fine-tuned with any custom medical image datasets, facilitating the generation of a vast array of images. Our experimental results outperform those of existing models on unseen dog cardiac X-ray images. Source code is available at https://github.com/lskdsjy/LeapfrogLCM.
- Abstract(参考訳): アクセス可能な医療画像データの不足は、医療診断のためのディープラーニングモデルを効果的に訓練する上で大きな障害となる。
MedImgsという,61の病型にまたがる250,127以上の画像と,オープンソースリポジトリから人間と動物の159のクラスからなる多様なデータセットを収集した。
収集したMedImgsデータセットに基づいて,再学習拡散モデルから抽出したLapfrog Latent Consistency Model (LLCM)を提案する。
本稿では,確率フロー常微分方程式(PF-ODE)として逆拡散過程を定式化し,Leapfrogアルゴリズムを用いて遅延空間で解いた。
この定式化は、追加イテレーションを必要とせずに、迅速なサンプリングを可能にする。
本モデルは,医用画像の生成における最先端性能を示す。
さらに、我々のモデルは任意のカスタムな医用画像データセットで微調整できるため、膨大な画像の生成が容易になる。
実験の結果, 犬心X線画像の既存モデルよりも優れていた。
ソースコードはhttps://github.com/lskdsjy/LeapfrogLCMで入手できる。
関連論文リスト
- CROCODILE: Causality aids RObustness via COntrastive DIsentangled LEarning [8.975676404678374]
CROCODILEフレームワークを導入し、因果関係のツールがモデルの堅牢性からドメインシフトを育む方法を示します。
我々はCXRの多ラベル肺疾患分類に750万枚以上の画像を用いて本手法を適用した。
論文 参考訳(メタデータ) (2024-08-09T09:08:06Z) - Temporal Evolution of Knee Osteoarthritis: A Diffusion-based Morphing Model for X-ray Medical Image Synthesis [6.014316825270666]
患者の健康な膝と重度のKOAステージ間の中間X線画像の合成を目的とした新しい深層学習モデルを提案する。
テストフェーズでは,健常な膝X線に基づいて,KOAX線画像の連続的かつ効果的なシーケンスを生成することができる。
提案手法は拡散モジュールと変形モジュールを統合し,X線源画像とターゲット画像との空間的変形の詳細を抽出する。
論文 参考訳(メタデータ) (2024-08-01T20:00:18Z) - DiNO-Diffusion. Scaling Medical Diffusion via Self-Supervised Pre-Training [0.0]
Dino-Diffusionは潜在拡散モデル(LDM)の自己教師型手法である
アノテーションへの依存をなくすことで、私たちのトレーニングは、公開胸部X線データセットから868万以上の未ラベル画像を活用する。
小さなデータプールからでも意味的に多様な合成データセットを生成するために使用できる。
論文 参考訳(メタデータ) (2024-07-16T10:51:21Z) - ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images [44.107186498384024]
ImageFlowNetは、空間的詳細を保存しながら、初期画像から疾患軌跡を予測するために設計された新しいモデルである。
我々は、ODEの定式化を支援し、高レベルの視覚的特徴を含む正規化を動機付ける理論的洞察を提供する。
私たちのコントリビューションには、ImageFlowNetの開発、実世界のデータセットに関する理論的および実証的な検証が含まれています。
論文 参考訳(メタデータ) (2024-06-20T23:51:32Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Smpling (A-DPS) は、ある種類の腐敗に対して事前訓練された生成モデルである。
A-DPSは、いくつかの画像復元タスクにおいて、クリーンなデータで訓練されたモデルよりも、速度と性能の両方で優れていることが示される。
我々はAmbient Diffusionフレームワークを拡張して、FourierサブサンプルのマルチコイルMRI測定にのみアクセスしてMRIモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-03-13T17:28:20Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
大規模なデータセットでトレーニングされた拡散モデルは、顕著な品質と多様性のフォトリアリスティックなイメージを合成することができる。
i)拡散モデルの文脈でデータ属性の形式的概念を提供し、(ii)そのような属性を反実的に検証することを可能にする枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-11T08:39:43Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
本稿では,LCM(Latent Consistency Models)を提案する。
高品質の768 x 768 24-step LCMは、トレーニングに32A100 GPU時間しかかからない。
また,画像データセットの微調整に適した新しいLCM法であるLCF(Latent Consistency Fine-tuning)についても紹介する。
論文 参考訳(メタデータ) (2023-10-06T17:11:58Z) - Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological
Report [0.0]
インペイントアルゴリズムは、入力画像の1つ以上の領域を変更することができるDL生成モデルのサブセットである。
これらのアルゴリズムの性能は、その限られた出力量のために、しばしば準最適である。
拡散確率モデル(DDPM)は、GANに匹敵する品質の結果を生成することができる、最近導入された生成ネットワークのファミリーである。
論文 参考訳(メタデータ) (2022-10-21T17:13:14Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。