論文の概要: Hybrid Gaussian Process Regression with Temporal Feature Extraction for Partially Interpretable Remaining Useful Life Interval Prediction in Aeroengine Prognostics
- arxiv url: http://arxiv.org/abs/2411.15185v1
- Date: Tue, 19 Nov 2024 03:00:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:24:53.099099
- Title: Hybrid Gaussian Process Regression with Temporal Feature Extraction for Partially Interpretable Remaining Useful Life Interval Prediction in Aeroengine Prognostics
- Title(参考訳): 航空工学における時間的特徴抽出を用いたハイブリッドガウスプロセス回帰法
- Authors: Tian Niu, Zijun Xu, Heng Luo, Ziqing Zhou,
- Abstract要約: 本稿では,Remaining Useful Life (RUL) 間隔予測のための改良されたガウスプロセス回帰(GPR)モデルを提案する。
修正されたGPRは、過去のデータから学習することで信頼区間を予測し、より構造化された方法で不確実性モデリングに対処する。
現代の製造システムに固有の複雑な時系列パターンや動的挙動を効果的に捉えている。
- 参考スコア(独自算出の注目度): 0.615155791092452
- License:
- Abstract: The estimation of Remaining Useful Life (RUL) plays a pivotal role in intelligent manufacturing systems and Industry 4.0 technologies. While recent advancements have improved RUL prediction, many models still face interpretability and compelling uncertainty modeling challenges. This paper introduces a modified Gaussian Process Regression (GPR) model for RUL interval prediction, tailored for the complexities of manufacturing process development. The modified GPR predicts confidence intervals by learning from historical data and addresses uncertainty modeling in a more structured way. The approach effectively captures intricate time-series patterns and dynamic behaviors inherent in modern manufacturing systems by coupling GPR with deep adaptive learning-enhanced AI process models. Moreover, the model evaluates feature significance to ensure more transparent decision-making, which is crucial for optimizing manufacturing processes. This comprehensive approach supports more accurate RUL predictions and provides transparent, interpretable insights into uncertainty, contributing to robust process development and management.
- Abstract(参考訳): RUL(Remaining Useful Life)の推定は、インテリジェントな製造システムと産業用4.0技術において重要な役割を担っている。
最近の進歩はRUL予測を改善したが、多くのモデルは解釈可能性と説得力のある不確実性モデリングの課題に直面している。
本稿では,RUL間隔予測のための改良型ガウスプロセス回帰(GPR)モデルを提案する。
修正されたGPRは、過去のデータから学習することで信頼区間を予測し、より構造化された方法で不確実性モデリングに対処する。
このアプローチは、GPRと深層適応学習強化AIプロセスモデルを組み合わせることで、現代の製造システムに固有の複雑な時系列パターンと動的な振る舞いを効果的にキャプチャする。
さらに, このモデルでは, 製造プロセスの最適化に欠かせない, 透明性の高い意思決定を実現するために, 特徴量を評価する。
この包括的なアプローチは、より正確なRUL予測をサポートし、不確実性に対する透明で解釈可能な洞察を提供し、堅牢なプロセス開発と管理に寄与します。
関連論文リスト
- Learning Global and Local Features of Power Load Series Through Transformer and 2D-CNN: An Image-based Multi-step Forecasting Approach Incorporating Phase Space Reconstruction [1.9458156037869137]
本研究では,PSRをニューラルネットワークと微妙に統合し,エンドツーエンドの学習システムを構築することで,新たな多段階予測手法を提案する。
PSR-GALIENと呼ばれる新しいディープラーニングモデルが設計され、トランスフォーマーと2D-CNNが画像のグローバルパターンとローカルパターンの抽出に使用される。
その結果,6つの最先端ディープラーニングモデルと比較して,PSR-GALIENの予測性能はこれらのベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-07-16T09:59:13Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
我々は、Koopman Invertible Autoencoders (KIA) と呼ぶ、Koopman演算子理論に基づく新しい機械学習モデルを提案する。
KIAは、無限次元ヒルベルト空間における前方と後方のダイナミクスをモデル化することによって、システムの固有の特性を捉えている。
これにより,低次元表現を効率よく学習し,長期システムの挙動をより正確に予測することが可能になる。
論文 参考訳(メタデータ) (2023-09-19T03:42:55Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Measuring and Reducing Model Update Regression in Structured Prediction
for NLP [31.86240946966003]
後方互換性は、新しいモデルが前者によって正しく処理されたケースに回帰しないことを要求する。
本研究は、構造化予測タスクにおける更新回帰をモデル化する。
本稿では,構造化出力の特性を考慮し,単純かつ効果的なバックワード・コングルエント・リグレード(BCR)を提案する。
論文 参考訳(メタデータ) (2022-02-07T07:04:54Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z) - Variational Auto-Regressive Gaussian Processes for Continual Learning [17.43751039943161]
連続学習におけるシーケンシャルなタスクを解くための原則的後続更新機構を開発する。
スケーラブルな後続に対するスパース誘導点近似を頼りに、新しい自己回帰変動分布を提案する。
平均的な予測エントロピー推定は、VAR-GPが破滅的な忘れを防いでいることを示している。
論文 参考訳(メタデータ) (2020-06-09T19:23:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。