論文の概要: Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
- arxiv url: http://arxiv.org/abs/2411.15216v1
- Date: Wed, 20 Nov 2024 16:17:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:23:22.628853
- Title: Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
- Title(参考訳): 円盤損失:配電距離制約を通した半ショット領域の回帰強化
- Authors: Guangkun Nie, Gongzheng Tang, Shenda Hong,
- Abstract要約: Dist Lossは、モデルとターゲットラベルの間の分布距離を最小限に抑えるために設計された損失関数である。
コンピュータビジョンとヘルスケアにまたがる3つのデータセットを対象に実験を行った。
- 参考スコア(独自算出の注目度): 12.757563335570865
- License:
- Abstract: Imbalanced data distributions are prevalent in real-world scenarios, posing significant challenges in both imbalanced classification and imbalanced regression tasks. They often cause deep learning models to overfit in areas of high sample density (many-shot regions) while underperforming in areas of low sample density (few-shot regions). This characteristic restricts the utility of deep learning models in various sectors, notably healthcare, where areas with few-shot data hold greater clinical relevance. While recent studies have shown the benefits of incorporating distribution information in imbalanced classification tasks, such strategies are rarely explored in imbalanced regression. In this paper, we address this issue by introducing a novel loss function, termed Dist Loss, designed to minimize the distribution distance between the model's predictions and the target labels in a differentiable manner, effectively integrating distribution information into model training. Dist Loss enables deep learning models to regularize their output distribution during training, effectively enhancing their focus on few-shot regions. We have conducted extensive experiments across three datasets spanning computer vision and healthcare: IMDB-WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR. The results demonstrate that Dist Loss effectively mitigates the negative impact of imbalanced data distribution on model performance, achieving state-of-the-art results in sparse data regions. Furthermore, Dist Loss is easy to integrate, complementing existing methods.
- Abstract(参考訳): 不均衡なデータ分散は、現実のシナリオで一般的であり、不均衡な分類と不均衡な回帰タスクの両方において重大な課題を提起する。
深層学習モデルは、サンプル密度の低い領域(フェーショット領域)では性能が低く、高いサンプル密度の領域(多くのショット領域)では過度に適合することが多い。
この特徴は、様々な分野、特に医療分野における深層学習モデルの実用性を制限する。
最近の研究では、分布情報を不均衡な分類タスクに組み込むことの利点が示されているが、不均衡な回帰においてそのような戦略はめったに検討されない。
本稿では,モデル予測と対象ラベルとの分布距離を異なる方法で最小化し,分散情報をモデルトレーニングに効果的に統合することを目的として,Dist Lossと呼ばれる新たな損失関数を導入することでこの問題に対処する。
Dist Lossは、ディープラーニングモデルによるトレーニング中の出力分布の正規化を可能にし、少数の領域へのフォーカスを効果的に強化する。
コンピュータビジョンと医療にまたがる3つのデータセット(IMDB-WIKI-DIR, AgeDB-DIR, ECG-Ka-DIR)にわたる広範な実験を行った。
その結果、不均衡なデータ分布がモデル性能に与える影響を効果的に軽減し、スパースデータ領域における最先端の結果を得ることができた。
さらに、Dist Lossは統合が容易で、既存のメソッドを補完します。
関連論文リスト
- Gradient-based Class Weighting for Unsupervised Domain Adaptation in Dense Prediction Visual Tasks [3.776249047528669]
本稿では,クラスウェイトをUDA学習損失に組み込んだクラスバランス緩和戦略を提案する。
損失勾配を通してこれらの重みを動的に推定する斬新さは、グラディエントに基づくクラス重み付け(GBW)学習を定義する。
GBWは、大きな表現されたクラスによって学習が妨げられるクラスの貢献を自然に増大させる。
論文 参考訳(メタデータ) (2024-07-01T14:34:25Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
近年のSemi-Supervised Object Detection (SS-OD) 法は主に自己学習に基づいており、教師モデルにより、ラベルなしデータを監視信号としてハードな擬似ラベルを生成する。
実験結果から,これらの手法が直面する課題を分析した。
本稿では,大規模オブジェクトサイズの分散とクラス不均衡に頑健な簡易かつ効果的なエンド・ツー・エンド知識蒸留フレームワークであるSED(Scale-Equivalent Distillation)を提案する。
論文 参考訳(メタデータ) (2022-03-23T07:33:37Z) - Center Prediction Loss for Re-identification [65.58923413172886]
我々は, 中心予測率に基づく新たな損失, すなわち, 試料が特徴空間の位置に位置しなければならず, そこから同一クラス標本の中心の位置を大まかに予測できることを示す。
今回の新たな損失により,クラス間サンプルの分離性が向上しつつ,クラス内分散制約がより柔軟になることを示す。
論文 参考訳(メタデータ) (2021-04-30T03:57:31Z) - Deep Stable Learning for Out-Of-Distribution Generalization [27.437046504902938]
深層ニューラルネットワークに基づくアプローチは、同様の分布を持つデータとトレーニングデータをテストする際に顕著なパフォーマンスを達成した。
トレーニングとテストデータ間の分散シフトの影響を排除することは、パフォーマンス向上の深層モデルの構築に不可欠です。
トレーニングサンプルの学習重みによる特徴間の依存関係を除去し,この問題に対処することを提案する。
論文 参考訳(メタデータ) (2021-04-16T03:54:21Z) - Unsupervised neural adaptation model based on optimal transport for
spoken language identification [54.96267179988487]
トレーニングセットとテストセット間の音響音声の統計的分布のミスマッチにより,音声言語識別(SLID)の性能が大幅に低下する可能性がある。
SLIDの分布ミスマッチ問題に対処するために,教師なしニューラル適応モデルを提案する。
論文 参考訳(メタデータ) (2020-12-24T07:37:19Z) - Generic Semi-Supervised Adversarial Subject Translation for Sensor-Based
Human Activity Recognition [6.2997667081978825]
本稿では,人間活動認識における半教師付きドメイン適応のための,新しい汎用的で堅牢なアプローチを提案する。
本手法は,対象対象対象と対象対象対象対象からのみ注釈付きサンプルからの知識を活用することにより,問題点に対処するための敵対的枠組みの利点を生かしている。
その結果,提案手法が最先端手法に対して有効であることを示し,オポチュニティ,LISSI,PAMAP2データセットの高レベルのアクティビティ認識指標を最大13%,4%,13%改善した。
論文 参考訳(メタデータ) (2020-11-11T12:16:23Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
データ拡張によるトレーニングは、リスクとその勾配をよりよく見積もることを示し、データ拡張でトレーニングされたモデルに対して、PAC-Bayes一般化を提供する。
また,データ拡張と比べ,平均化は凸損失を伴う場合の一般化誤差を低減し,PAC-Bayes境界を狭めることを示した。
論文 参考訳(メタデータ) (2020-05-01T02:08:58Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
本稿では,2つの同時手法を合体させて,不均衡な画像のバランスを回復する手法を提案する。
我々のモデルでは、生成的および識別的ネットワークは、新しい競争力のあるゲームをする。
カプセルGANの合体は、畳み込みGANと比較して非常に少ないパラメータで重なり合うクラスを認識するのに効果的である。
論文 参考訳(メタデータ) (2020-04-05T12:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。