論文の概要: Feature-interactive Siamese graph encoder-based image analysis to predict STAS from histopathology images in lung cancer
- arxiv url: http://arxiv.org/abs/2411.15274v1
- Date: Fri, 22 Nov 2024 14:21:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:41.793501
- Title: Feature-interactive Siamese graph encoder-based image analysis to predict STAS from histopathology images in lung cancer
- Title(参考訳): 肺がんの病理組織像からSTASを予測するための機能的相互作用型シームズグラフエンコーダを用いた画像解析
- Authors: Liangrui Pan, Qingchun Liang, Wenwu Zeng, Yijun Peng, Zhenyu Zhao, Yiyi Liang, Jiadi Luo, Xiang Wang, Shaoliang Peng,
- Abstract要約: 病理組織学はSTAS検出のゴールドスタンダードであるが、従来の方法では主観的、時間的、誤診の傾向が強い。
肺がん画像からSTASを予測するために,機能的対話型シームズグラフエンコーダを用いた画像解析モデルVERNを提案する。
- 参考スコア(独自算出の注目度): 7.773244667755116
- License:
- Abstract: Spread through air spaces (STAS) is a distinct invasion pattern in lung cancer, crucial for prognosis assessment and guiding surgical decisions. Histopathology is the gold standard for STAS detection, yet traditional methods are subjective, time-consuming, and prone to misdiagnosis, limiting large-scale applications. We present VERN, an image analysis model utilizing a feature-interactive Siamese graph encoder to predict STAS from lung cancer histopathological images. VERN captures spatial topological features with feature sharing and skip connections to enhance model training. Using 1,546 histopathology slides, we built a large single-cohort STAS lung cancer dataset. VERN achieved an AUC of 0.9215 in internal validation and AUCs of 0.8275 and 0.8829 in frozen and paraffin-embedded test sections, respectively, demonstrating clinical-grade performance. Validated on a single-cohort and three external datasets, VERN showed robust predictive performance and generalizability, providing an open platform (http://plr.20210706.xyz:5000/) to enhance STAS diagnosis efficiency and accuracy.
- Abstract(参考訳): 気道拡大(STAS)は肺癌の浸潤パターンであり,予後評価や外科的決定の導出に不可欠である。
病理組織学はSTAS検出のゴールドスタンダードであるが、従来の手法は主観的、時間的、誤診の傾向があり、大規模な応用が制限されている。
肺がんの病理組織像からSTASを予測するために,機能的相互作用型シームズグラフエンコーダを用いた画像解析モデルVERNを提案する。
VERNは、空間的トポロジ的特徴を特徴共有でキャプチャし、接続をスキップしてモデルトレーニングを強化する。
病理組織学的スライスを1,546枚使用し,大きな1コホートSTAS肺がんデータセットを構築した。
VERNは内部検証では0.9215AUC、凍結試験では0.8275、パラフィン埋込み試験では0.8829AUCを達成した。
単一コホートと3つの外部データセットで検証され、VERNは堅牢な予測性能と一般化性を示し、STAS診断効率と精度を高めるオープンプラットフォーム(http://plr.20210706.xyz:5000/)を提供する。
関連論文リスト
- Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training [3.2646075700744928]
Histo whole slide image (WSI) は、特に精度オンコロジーにおいて、ディープラーニングに基づく診断ソリューションの開発に広く利用されている。
これらの診断ソフトウェアのほとんどは、トレーニングやテストデータにおけるバイアスや不純物に弱いため、不正確な診断につながる可能性がある。
我々は、WSIを6つの組織領域に分離する、頑健だが軽量なディープラーニングベースの分類器であるHistoROIを紹介した。
論文 参考訳(メタデータ) (2024-09-29T07:08:45Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
本稿では、畳み込みニューラルネットワークと視覚変換器の長所を利用する革新的なモデルを提案する。
ビデオ中の物体検出にインスパイアされた各3次元CT画像をビデオとして扱い、個々のスライスをフレームとして、肺結節をオブジェクトとして扱い、時系列アプリケーションを可能にする。
論文 参考訳(メタデータ) (2023-10-05T07:48:55Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Pulmonary embolism identification in computerized tomography pulmonary
angiography scans with deep learning technologies in COVID-19 patients [0.65756807269289]
本稿では,A-Scans画像における肺塞栓症同定のための最も正確かつ高速な深層学習モデルについて紹介する。
本研究では,肺塞栓症の診断精度を向上させるために,分類モデルと対象検出モデルを組み合わせた高速トラックソリューション(システム)を提案する。
論文 参考訳(メタデータ) (2021-05-24T10:23:21Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z) - Representation Learning of Histopathology Images using Graph Neural
Networks [12.427740549056288]
本稿では,WSI表現学習のための2段階フレームワークを提案する。
色に基づく手法を用いて関連するパッチをサンプリングし、グラフニューラルネットワークを用いてサンプルパッチ間の関係を学習し、画像情報を単一のベクトル表現に集約する。
肺腺癌 (LUAD) と肺扁平上皮癌 (LUSC) の2つの亜型を鑑別するためのアプローチの有用性について検討した。
論文 参考訳(メタデータ) (2020-04-16T00:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。