When Spatial meets Temporal in Action Recognition
- URL: http://arxiv.org/abs/2411.15284v1
- Date: Fri, 22 Nov 2024 16:39:45 GMT
- Title: When Spatial meets Temporal in Action Recognition
- Authors: Huilin Chen, Lei Wang, Yifan Chen, Tom Gedeon, Piotr Koniusz,
- Abstract summary: We introduce the Temporal Integration and Motion Enhancement (TIME) layer, a novel preprocessing technique designed to incorporate temporal information.
The TIME layer generates new video frames by rearranging the original sequence, preserving temporal order while embedding $N2$ temporally evolving frames into a single spatial grid.
Our experiments show that the TIME layer enhances recognition accuracy, offering valuable insights for video processing tasks.
- Score: 34.53091498930863
- License:
- Abstract: Video action recognition has made significant strides, but challenges remain in effectively using both spatial and temporal information. While existing methods often focus on either spatial features (e.g., object appearance) or temporal dynamics (e.g., motion), they rarely address the need for a comprehensive integration of both. Capturing the rich temporal evolution of video frames, while preserving their spatial details, is crucial for improving accuracy. In this paper, we introduce the Temporal Integration and Motion Enhancement (TIME) layer, a novel preprocessing technique designed to incorporate temporal information. The TIME layer generates new video frames by rearranging the original sequence, preserving temporal order while embedding $N^2$ temporally evolving frames into a single spatial grid of size $N \times N$. This transformation creates new frames that balance both spatial and temporal information, making them compatible with existing video models. When $N=1$, the layer captures rich spatial details, similar to existing methods. As $N$ increases ($N\geq2$), temporal information becomes more prominent, while the spatial information decreases to ensure compatibility with model inputs. We demonstrate the effectiveness of the TIME layer by integrating it into popular action recognition models, such as ResNet-50, Vision Transformer, and Video Masked Autoencoders, for both RGB and depth video data. Our experiments show that the TIME layer enhances recognition accuracy, offering valuable insights for video processing tasks.
Related papers
- Spatial-Temporal Knowledge-Embedded Transformer for Video Scene Graph
Generation [64.85974098314344]
Video scene graph generation (VidSGG) aims to identify objects in visual scenes and infer their relationships for a given video.
Inherently, object pairs and their relationships enjoy spatial co-occurrence correlations within each image and temporal consistency/transition correlations across different images.
We propose a spatial-temporal knowledge-embedded transformer (STKET) that incorporates the prior spatial-temporal knowledge into the multi-head cross-attention mechanism.
arXiv Detail & Related papers (2023-09-23T02:40:28Z) - Orthogonal Temporal Interpolation for Zero-Shot Video Recognition [45.53856045374685]
Zero-shot video recognition (ZSVR) is a task that aims to recognize video categories that have not been seen during the model training process.
Recent vision-language models (VLMs) pre-trained on large-scale image-text pairs have demonstrated impressive transferability for ZSVR.
arXiv Detail & Related papers (2023-08-14T02:26:49Z) - Deeply-Coupled Convolution-Transformer with Spatial-temporal
Complementary Learning for Video-based Person Re-identification [91.56939957189505]
We propose a novel spatial-temporal complementary learning framework named Deeply-Coupled Convolution-Transformer (DCCT) for high-performance video-based person Re-ID.
Our framework could attain better performances than most state-of-the-art methods.
arXiv Detail & Related papers (2023-04-27T12:16:44Z) - Spatiotemporal Inconsistency Learning for DeepFake Video Detection [51.747219106855624]
We present a novel temporal modeling paradigm in TIM by exploiting the temporal difference over adjacent frames along with both horizontal and vertical directions.
And the ISM simultaneously utilizes the spatial information from SIM and temporal information from TIM to establish a more comprehensive spatial-temporal representation.
arXiv Detail & Related papers (2021-09-04T13:05:37Z) - StyleVideoGAN: A Temporal Generative Model using a Pretrained StyleGAN [70.31913835035206]
We present a novel approach to the video synthesis problem that helps to greatly improve visual quality.
We make use of a pre-trained StyleGAN network, the latent space of which allows control over the appearance of the objects it was trained for.
Our temporal architecture is then trained not on sequences of RGB frames, but on sequences of StyleGAN latent codes.
arXiv Detail & Related papers (2021-07-15T09:58:15Z) - Space-time Mixing Attention for Video Transformer [55.50839896863275]
We propose a Video Transformer model the complexity of which scales linearly with the number of frames in the video sequence.
We demonstrate that our model produces very high recognition accuracy on the most popular video recognition datasets.
arXiv Detail & Related papers (2021-06-10T17:59:14Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - STH: Spatio-Temporal Hybrid Convolution for Efficient Action Recognition [39.58542259261567]
We present a novel S-Temporal Hybrid Network (STH) which simultaneously encodes spatial and temporal video information with a small parameter.
Such a design enables efficient-temporal modeling and maintains a small model scale.
STH enjoys performance superiority over 3D CNNs while maintaining an even smaller parameter cost than 2D CNNs.
arXiv Detail & Related papers (2020-03-18T04:46:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.