論文の概要: AdamZ: An Enhanced Optimisation Method for Neural Network Training
- arxiv url: http://arxiv.org/abs/2411.15375v1
- Date: Fri, 22 Nov 2024 23:33:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:25:04.300947
- Title: AdamZ: An Enhanced Optimisation Method for Neural Network Training
- Title(参考訳): AdamZ: ニューラルネットワークトレーニングのための最適化手法
- Authors: Ilia Zaznov, Atta Badii, Alfonso Dufour, Julian Kunkel,
- Abstract要約: AdamZは、オーバーシューティングと停滞に対処するメカニズムを組み込むことで、学習率を動的に調整する。
損失関数の最小化に一貫して優れており、精度が重要なアプリケーションに特に有利である。
- 参考スコア(独自算出の注目度): 1.54994260281059
- License:
- Abstract: AdamZ is an advanced variant of the Adam optimiser, developed to enhance convergence efficiency in neural network training. This optimiser dynamically adjusts the learning rate by incorporating mechanisms to address overshooting and stagnation, that are common challenges in optimisation. Specifically, AdamZ reduces the learning rate when overshooting is detected and increases it during periods of stagnation, utilising hyperparameters such as overshoot and stagnation factors, thresholds, and patience levels to guide these adjustments. While AdamZ may lead to slightly longer training times compared to some other optimisers, it consistently excels in minimising the loss function, making it particularly advantageous for applications where precision is critical. Benchmarking results demonstrate the effectiveness of AdamZ in maintaining optimal learning rates, leading to improved model performance across diverse tasks.
- Abstract(参考訳): AdamZは、ニューラルネットワークトレーニングにおける収束効率を高めるために開発されたAdam optimiserの進化版である。
このオプティマイザは、オーバーシューティングと停滞に対処する機構を組み込むことで学習率を動的に調整する。
具体的には、AdamZはオーバーシュート検出時の学習率を低下させ、オーバーシュートや停滞要因、しきい値、忍耐レベルなどのハイパーパラメータを活用して調整を誘導する。
AdamZは、他のいくつかのオプティマイザと比較して、トレーニング時間が少し長くなるかもしれないが、損失関数の最小化に一貫して優れており、精度が重要なアプリケーションでは特に有利である。
ベンチマークの結果は、AdamZが最適学習率を維持する上で有効であることを示し、様々なタスクにおけるモデル性能を改善した。
関連論文リスト
- Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
我々は、イテレーション間で一貫した改善を保証するために、動的ノイズ優先最適化(DNPO)を導入します。
Zephyr-7Bでの実験では、DNPOは既存の手法を一貫して上回り、平均性能は2.6%向上した。
DNPOは、GPT-4評価のベースラインに比べて29.4%のウィンロス率差で、モデル生成データの品質が大幅に向上したことを示している。
論文 参考訳(メタデータ) (2025-02-08T01:20:09Z) - Adaptive Friction in Deep Learning: Enhancing Optimizers with Sigmoid and Tanh Function [0.0]
我々は適応摩擦係数を統合する2つの新しい勾配であるsigSignGradとtanhSignGradを紹介する。
我々の理論解析は,摩擦係数Sの広帯域調整能力を示す。
ResNet50 と ViT アーキテクチャを用いた CIFAR-10, Mini-Image-Net 実験により,提案手法の優れた性能が確認された。
論文 参考訳(メタデータ) (2024-08-07T03:20:46Z) - AdamL: A fast adaptive gradient method incorporating loss function [1.6025685183216696]
本稿では,Adamの新たな変種であるAdamLを提案する。
我々は,Adam,EAdam,AdaBeliefと比較して,AdamLが最速収束あるいは最小目標関数値を達成することを示す。
バニラ畳み込みニューラルネットワークの場合、AdamLは他のAdamの変種とは違い、トレーニングの後半段階では学習率を手動で調整する必要がなくなる。
論文 参考訳(メタデータ) (2023-12-23T16:32:29Z) - StochGradAdam: Accelerating Neural Networks Training with Stochastic Gradient Sampling [0.0]
我々はAdamアルゴリズムの新たな拡張であるStochGradAdamを紹介し、勾配サンプリング手法を取り入れた。
StochGradAdamは、イテレーション毎の勾配更新が少ない場合でも、Adamに匹敵する、あるいは優れたパフォーマンスを実現している。
その結果,このアプローチは大規模モデルやデータセットに特に有効であることが示唆された。
論文 参考訳(メタデータ) (2023-10-25T22:45:31Z) - On discretisation drift and smoothness regularisation in neural network
training [0.0]
私たちは、最適化とモデル正規化に焦点をあてて、ディープラーニングの理解を改善するためのステップを作ることを目標としています。
まず、最も一般的なディープラーニング最適化アルゴリズムに基づいて、離散時間アルゴリズムである勾配降下(GD)を調査することから始める。
NGFと異なり、これらの新たな流れは、教師付き学習や2人のプレイヤゲームで観察されるトレーニング不安定性など、GDの学習速度固有の振る舞いを記述するのに使用できる。
そして、新しい学習率スケジュールと正則性を構築することにより、連続時間からの洞察を不安定なGDダイナミクスの緩和戦略に変換する。
論文 参考訳(メタデータ) (2023-10-21T15:21:36Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
大規模言語モデルに対する適応学習率(AdaLomo)を用いた低メモリ最適化を提案する。
AdaLomoはAdamWと同等の結果を得ると同時に、メモリ要件を大幅に削減し、大きな言語モデルをトレーニングするためのハードウェア障壁を低くする。
論文 参考訳(メタデータ) (2023-10-16T09:04:28Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
強化学習(Reinforcement Learning, RL)は、教師付き学習とは本質的に異なり、実際、これらの学習は単純なRLタスクでもうまく機能しない。
エージェント勾配分布は非独立で同一分布であり、非効率なメタトレーニングをもたらす。
おもちゃのタスクでしか訓練されていないが、我々の学習はブラックスの目に見えない複雑なタスクを一般化できることを示した。
論文 参考訳(メタデータ) (2023-02-03T00:11:02Z) - Few-shot Quality-Diversity Optimization [50.337225556491774]
品質多様性(QD)の最適化は、強化学習における知覚的最小値とスパース報酬を扱う上で効果的なツールであることが示されている。
本稿では,タスク分布の例から,パラメータ空間の最適化によって得られる経路の情報を利用して,未知の環境でQD手法を初期化する場合,数発の適応が可能であることを示す。
ロボット操作とナビゲーションベンチマークを用いて、疎密な報酬設定と密集した報酬設定の両方で実施された実験は、これらの環境でのQD最適化に必要な世代数を著しく削減することを示している。
論文 参考訳(メタデータ) (2021-09-14T17:12:20Z) - Training Aware Sigmoidal Optimizer [2.99368851209995]
Aware Sigmoidal関数をトレーニングすると、ローカルミニマよりもはるかにサドルロスの風景が表示されます。
本研究では,2相自動学習率スケジュールからなるTASO(Training Aware Sigmoidal Function)を提案する。
提案手法をAdam、RMS、Adagradなどの一般的な適応学習率スケジュールと比較した。
論文 参考訳(メタデータ) (2021-02-17T12:00:46Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
対戦型トレーニングモデルの堅牢性を改善するための枠組みを提案する。
共学習のパラメータモデルの重み付けにより、提案するフレームワークは、更新方向に対するロバスト性とステップの適応性を一貫して改善する。
論文 参考訳(メタデータ) (2020-04-25T20:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。