論文の概要: Less is More: Optimizing Function Calling for LLM Execution on Edge Devices
- arxiv url: http://arxiv.org/abs/2411.15399v1
- Date: Sat, 23 Nov 2024 00:51:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:14.725646
- Title: Less is More: Optimizing Function Calling for LLM Execution on Edge Devices
- Title(参考訳): より少ないもの:エッジデバイス上でのLDM実行のための関数呼び出しの最適化
- Authors: Varatheepan Paramanayakam, Andreas Karatzas, Iraklis Anagnostopoulos, Dimitrios Stamoulis,
- Abstract要約: 大きな言語モデル(LLM)は、複雑な入力を処理したり、複数のツールを効果的に管理できないため、エッジでの関数呼び出しに苦労する。
動的ツール選択のためのファインチューニングフリー関数呼び出し方式であるLess-is-Moreを紹介する。
我々のアプローチは、LLMで利用可能なツールの数を選択的に削減することで、エッジデバイス上での機能呼び出し性能、実行時間、電力効率を大幅に改善する、というキーインサイトに基づいている。
- 参考スコア(独自算出の注目度): 0.44784055850794474
- License:
- Abstract: The advanced function-calling capabilities of foundation models open up new possibilities for deploying agents to perform complex API tasks. However, managing large amounts of data and interacting with numerous APIs makes function calling hardware-intensive and costly, especially on edge devices. Current Large Language Models (LLMs) struggle with function calling at the edge because they cannot handle complex inputs or manage multiple tools effectively. This results in low task-completion accuracy, increased delays, and higher power consumption. In this work, we introduce Less-is-More, a novel fine-tuning-free function-calling scheme for dynamic tool selection. Our approach is based on the key insight that selectively reducing the number of tools available to LLMs significantly improves their function-calling performance, execution time, and power efficiency on edge devices. Experimental results with state-of-the-art LLMs on edge hardware show agentic success rate improvements, with execution time reduced by up to 70% and power consumption by up to 40%.
- Abstract(参考訳): ファンデーションモデルの高度な関数呼び出し機能は、複雑なAPIタスクを実行するエージェントをデプロイする新たな可能性を開く。
しかし、大量のデータを管理し、多数のAPIとやり取りすることで、特にエッジデバイスにおいて、ハードウェア呼び出しが集中的でコストがかかる。
現在のLarge Language Models(LLM)は、複雑な入力を処理したり、複数のツールを効率的に管理できないため、エッジでの関数呼び出しに苦労している。
これにより、タスク補完精度が低下し、遅延が増加し、消費電力が増大する。
本研究では,動的ツール選択のためのファインチューニングフリー関数呼び出し方式であるLes-is-Moreを紹介する。
我々のアプローチは、LLMで利用可能なツールの数を選択的に削減することで、エッジデバイス上での機能呼び出し性能、実行時間、電力効率を大幅に改善する、というキーインサイトに基づいている。
エッジハードウェア上での最先端LCMによる実験結果から,実行時間を最大70%,消費電力を最大40%削減し,エージェント的成功率の向上が得られた。
関連論文リスト
- Alopex: A Computational Framework for Enabling On-Device Function Calls with LLMs [31.961168273386757]
AlopexはFox Large Language Modelsを使ってデバイス上で正確な関数呼び出しを可能にするフレームワークである。
データミキシング戦略は破滅的な忘れを軽減し、関数呼び出しデータと教科書データセットを組み合わせて様々なタスクのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-11-07T22:15:17Z) - Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
本研究では,関数呼び出しにおいて,より小さな言語モデルを訓練するための新しいフレームワークを提案する。
特定の論理的および数学的推論タスクに焦点を当てている。
このアプローチは,関数呼び出しによるこれらのタスクの小型モデルの性能向上を目的としている。
論文 参考訳(メタデータ) (2024-10-24T16:27:35Z) - Achieving Tool Calling Functionality in LLMs Using Only Prompt Engineering Without Fine-Tuning [0.0]
現在、ローカルにデプロイされたオープンソースの大規模言語モデル(LLM)と、いくつかの商用モデルインターフェースは、安定したツール呼び出し機能をサポートしていない。
本稿では, プロンプトエンジニアリングといくつかの巧妙なコード設計のみを用いて, LLMが安定したツール呼び出し機能を実現する方法を提案する。
論文 参考訳(メタデータ) (2024-07-06T08:29:12Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
BigCodeBenchは、大規模言語モデル(LLM)に対して、139のライブラリと7つのドメインから1140のきめ細かいタスクに対して、複数の関数呼び出しをツールとして呼び出すためのベンチマークである。
評価の結果,LLMは機能コールを正確に使用するための複雑な指示に従うことができず,スコアは最大60%,人的性能は97%と極めて低いことがわかった。
そこで本研究では,BigCodeBench-Instructという自然言語指向の変種を提案する。
論文 参考訳(メタデータ) (2024-06-22T15:52:04Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - An LLM-Tool Compiler for Fused Parallel Function Calling [1.990293258268139]
LLM(Large Language Models)における最先端のシーケンシャル推論は、会話タスク以外のCopilotの機能を複雑な関数呼び出しに拡張した。
LLM-Toolコンパイラは、実行時に単一の関数の下で同様のツール操作を融合し、LLMに統一的なタスクとして提示する。
大規模なCopilotプラットフォーム上でベンチマークされたLLM-Toolコンパイラは、既存のメソッドよりも最大4倍の並列呼び出しを実現し、トークンコストとレイテンシを最大40%と12%削減する。
論文 参考訳(メタデータ) (2024-05-07T18:55:50Z) - MELTing point: Mobile Evaluation of Language Transformers [8.238355633015068]
大規模言語モデル(LLM)のモバイル実行の現状について検討する。
我々は,デバイス上でのLLMのヘッドレス実行とベンチマークをサポートする,独自の自動化インフラストラクチャMELTを開発した。
我々は、一般的な命令の微調整 LLM を評価し、それぞれのフレームワークを用いてエンドツーエンドおよび粒度の性能を計測する。
論文 参考訳(メタデータ) (2024-03-19T15:51:21Z) - An LLM Compiler for Parallel Function Calling [68.04566807806071]
我々は,複数の関数呼び出しを効率的にオーケストレーションするために並列に関数を実行するLLMCompilerを紹介する。
ReActと比較して、一貫したレイテンシの高速化が3.7倍、コストの削減が6.7倍、精度が9%向上している。
論文 参考訳(メタデータ) (2023-12-07T18:32:04Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - ART: Automatic multi-step reasoning and tool-use for large language
models [105.57550426609396]
大規模言語モデル(LLM)は、数秒とゼロショットの設定で複雑な推論を行うことができる。
各推論ステップは、コアLLM機能を超えて計算をサポートする外部ツールに依存することができる。
プログラムとして中間推論ステップを自動生成するために凍結LDMを使用するフレームワークであるART(Automatic Reasoning and Tool-use)を導入する。
論文 参考訳(メタデータ) (2023-03-16T01:04:45Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
継続的学習のための簡易タスク特化機能マップ変換戦略を提案する。
これらは新しいタスクを学習するための強力な柔軟性を提供し、ベースアーキテクチャに最小パラメータを追加することで実現される。
本手法の有効性と効率を,判別(cifar-100およびimagenet-1k)および生成的タスクの一連の実験を用いて実証する。
論文 参考訳(メタデータ) (2021-03-25T01:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。