論文の概要: Hierarchical Cross-Attention Network for Virtual Try-On
- arxiv url: http://arxiv.org/abs/2411.15542v1
- Date: Sat, 23 Nov 2024 12:39:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:11.288002
- Title: Hierarchical Cross-Attention Network for Virtual Try-On
- Title(参考訳): 仮想トライオンのための階層的クロスアテンションネットワーク
- Authors: Hao Tang, Bin Ren, Pingping Wu, Nicu Sebe,
- Abstract要約: 我々は,仮想試行課題に対する革新的な解決策を提示する:我々の小説HCANet(Hierarchical Cross-Attention Network)
HCANetは、幾何学的マッチングと試行という2つの主要なステージで作られており、それぞれが現実的な仮想試行の結果を提供する上で重要な役割を果たす。
HCANetの重要な特徴は、新しい階層的クロスアテンション(HCA)ブロックを両方のステージに組み込むことで、個人と衣服のモダリティ間の長距離相関を効果的に捉えることができる。
- 参考スコア(独自算出の注目度): 59.50297858307268
- License:
- Abstract: In this paper, we present an innovative solution for the challenges of the virtual try-on task: our novel Hierarchical Cross-Attention Network (HCANet). HCANet is crafted with two primary stages: geometric matching and try-on, each playing a crucial role in delivering realistic virtual try-on outcomes. A key feature of HCANet is the incorporation of a novel Hierarchical Cross-Attention (HCA) block into both stages, enabling the effective capture of long-range correlations between individual and clothing modalities. The HCA block enhances the depth and robustness of the network. By adopting a hierarchical approach, it facilitates a nuanced representation of the interaction between the person and clothing, capturing intricate details essential for an authentic virtual try-on experience. Our experiments establish the prowess of HCANet. The results showcase its performance across both quantitative metrics and subjective evaluations of visual realism. HCANet stands out as a state-of-the-art solution, demonstrating its capability to generate virtual try-on results that excel in accuracy and realism. This marks a significant step in advancing virtual try-on technologies.
- Abstract(参考訳): 本稿では,仮想試行課題に対する革新的な解決策として,HCANet(Hierarchical Cross-Attention Network)を提案する。
HCANetは、幾何学的マッチングと試行という2つの主要なステージで作られており、それぞれが現実的な仮想試行の結果を提供する上で重要な役割を果たす。
HCANetの重要な特徴は、新しい階層的クロスアテンション(HCA)ブロックを両方のステージに組み込むことで、個人と衣服のモダリティ間の長距離相関を効果的に捉えることができる。
HCAブロックはネットワークの深さと堅牢性を高める。
階層的なアプローチを採用することで、人と衣服の間のインタラクションのニュアンスな表現が容易になり、真の仮想試行体験に必要な複雑な詳細をキャプチャする。
我々の実験はHCANetの長所を定めている。
その結果,視覚リアリズムの定量的評価と主観的評価の両面において,その性能が示された。
HCANetは最先端のソリューションであり、精度とリアリズムに優れた仮想試行結果を生成する能力を示している。
これは、仮想トライオン技術の進歩における重要なステップである。
関連論文リスト
- Time-Efficient and Identity-Consistent Virtual Try-On Using A Variant of Altered Diffusion Models [4.038493506169702]
本研究は, 複雑なテクスチャの詳細と, 対象者と衣服の特徴を, 様々なシナリオで保存することの課題を強調する。
様々な既存アプローチが検討され、制限と未解決の側面を強調している。
次に,仮想試行中にテクスチャのテクスチャ保存とユーザアイデンティティ保持に対処する,新しい拡散型ソリューションを提案する。
論文 参考訳(メタデータ) (2024-03-12T07:15:29Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for
Cross-Modal Retrieval [59.15034487974549]
画像テキスト検索のための新しいコラボレーティブな2ストリームビジョン言語事前学習モデルCOTSを提案する。
我々のCOTSは,2ストリーム方式の中で最も高い性能を達成し,推論の速度は10,800倍に向上した。
重要なことは、我々のCOTSはテキストからビデオへの検索にも適用でき、広く使われているMSR-VTTデータセットに新たな最先端技術をもたらすことである。
論文 参考訳(メタデータ) (2022-04-15T12:34:47Z) - Cloth Interactive Transformer for Virtual Try-On [106.21605249649957]
本稿では,仮想試行作業のための2段階のインタラクティブトランス (CIT) 手法を提案する。
第1段階では, CITマッチングブロックを設計し, 着物非依存者情報と着物内布情報との長距離相関関係を正確に把握することを目的とした。
第2段階では,人物表現のグローバルな相互相互依存関係を確立するためのCIT推論ブロック,整形衣料品,およびそれに対応する整形布マスクを作成した。
論文 参考訳(メタデータ) (2021-04-12T14:45:32Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。