論文の概要: From Complexity to Parsimony: Integrating Latent Class Analysis to Uncover Multimodal Learning Patterns in Collaborative Learning
- arxiv url: http://arxiv.org/abs/2411.15590v1
- Date: Sat, 23 Nov 2024 15:36:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:14.202994
- Title: From Complexity to Parsimony: Integrating Latent Class Analysis to Uncover Multimodal Learning Patterns in Collaborative Learning
- Title(参考訳): 複雑性からパロシニーへ:協調学習における潜在クラス分析の統合とマルチモーダル学習パターンの解明
- Authors: Lixiang Yan, Dragan Gašević, Linxuan Zhao, Vanessa Echeverria, Yueqiao Jin, Roberto Martinez-Maldonado,
- Abstract要約: 本研究では,Multimodal Learning Analytics(MMLA)に潜在クラス分析(LCA)を統合する新しい手法を提案する。
LCAは、協調コミュニケーション(Collaborative Communication)、身体的コラボレーション(Embodied Collaboration)、遠隔インタラクション(Distant Interaction)、孤独エンゲージメント(Solitary Engagement)の4つの異なるクラスを特定した。
疫学ネットワーク分析は、これらのマルチモーダル指標を元のモノモーダル指標と比較し、マルチモーダルアプローチがより相似であることを発見した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Multimodal Learning Analytics (MMLA) leverages advanced sensing technologies and artificial intelligence to capture complex learning processes, but integrating diverse data sources into cohesive insights remains challenging. This study introduces a novel methodology for integrating latent class analysis (LCA) within MMLA to map monomodal behavioural indicators into parsimonious multimodal ones. Using a high-fidelity healthcare simulation context, we collected positional, audio, and physiological data, deriving 17 monomodal indicators. LCA identified four distinct latent classes: Collaborative Communication, Embodied Collaboration, Distant Interaction, and Solitary Engagement, each capturing unique monomodal patterns. Epistemic network analysis compared these multimodal indicators with the original monomodal indicators and found that the multimodal approach was more parsimonious while offering higher explanatory power regarding students' task and collaboration performances. The findings highlight the potential of LCA in simplifying the analysis of complex multimodal data while capturing nuanced, cross-modality behaviours, offering actionable insights for educators and enhancing the design of collaborative learning interventions. This study proposes a pathway for advancing MMLA, making it more parsimonious and manageable, and aligning with the principles of learner-centred education.
- Abstract(参考訳): MMLA(Multimodal Learning Analytics)は、高度なセンシング技術と人工知能を活用して複雑な学習プロセスをキャプチャするが、多様なデータソースを結合的な洞察に統合することは依然として困難である。
本研究は,モノモーダルな行動指標をパシモニアスなマルチモーダルな指標にマッピングするために,潜在クラス分析(LCA)をMMLAに組み込む新しい手法を提案する。
高忠実度医療シミュレーションの文脈を用いて、位置、音声、生理的データを収集し、17個のモノモーダル指標を導出した。
LCAは、協力的コミュニケーション、身体的コラボレーション、遠隔インタラクション、孤独なエンゲージメントの4つの異なる潜在クラスを特定し、それぞれがユニークなモノモダルパターンをキャプチャした。
疫学ネットワーク分析では、これらのマルチモーダル指標を元のモノモーダル指標と比較し、マルチモーダルアプローチは、学生のタスクやコラボレーションのパフォーマンスに関する説明力を高めながら、より同義的であることを示した。
この知見は、複雑なマルチモーダルデータの解析を簡素化し、微妙でモダリティな振る舞いを捉え、教育者に対して実行可能な洞察を提供し、協調学習介入の設計を強化することにおけるLCAの可能性を強調した。
本研究は,MMLAを推進し,より同義的で管理しやすくし,学習中心教育の原則と整合させる経路を提案する。
関連論文リスト
- On the Comparison between Multi-modal and Single-modal Contrastive Learning [50.74988548106031]
マルチモーダルとシングルモーダルのコントラスト学習の違いを理解するための理論的基盤を導入する。
マルチモーダル・シングルモーダル・コントラッシブ・ラーニングの下流タスクにおける一般化に影響を及ぼす臨界因子,すなわち信号対雑音比(SNR)を同定する。
我々の分析は、単一モードと多モードのコントラスト学習の最適化と一般化を特徴付ける統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-11-05T06:21:17Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Multiple Heads are Better than One: Mixture of Modality Knowledge Experts for Entity Representation Learning [51.80447197290866]
高品質なマルチモーダル実体表現を学習することは、マルチモーダル知識グラフ(MMKG)表現学習の重要な目標である。
既存の手法は、エレガントなエンティティワイドマルチモーダル融合戦略の構築に重点を置いている。
適応型マルチモーダルな実体表現を学習するために,Mixture of Modality Knowledge Expert (MoMoK) を用いた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-27T06:36:17Z) - Beyond Unimodal Learning: The Importance of Integrating Multiple Modalities for Lifelong Learning [23.035725779568587]
ディープニューラルネットワーク(DNN)におけるマルチモーダル性の役割と相互作用について検討する。
以上の結果から,複数のビューと相補的な情報を複数のモーダルから活用することで,より正確かつ堅牢な表現を学習できることが示唆された。
本稿では,各モーダルにおけるデータ点間の関係構造的類似性を利用して,異なるモーダルからの情報の統合と整合化を行う手法を提案する。
論文 参考訳(メタデータ) (2024-05-04T22:02:58Z) - Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis [10.587791312973872]
がんの生存率分析を促進するためのCohort-individual Cooperative Learningフレームワークを提案する。
知識分解とコホート指導手法の協調により,頑健なマルチモーダルサバイバル分析モデルを構築した。
論文 参考訳(メタデータ) (2024-04-03T01:36:27Z) - Contrastive Learning on Multimodal Analysis of Electronic Health Records [15.392566551086782]
本稿では,新しい特徴埋め込み生成モデルを提案し,マルチモーダルEHR特徴表現を得るためのマルチモーダルコントラスト損失を設計する。
本理論は, 単モーダル学習と比較して, 多モーダル学習の有効性を実証するものである。
この接続は、マルチモーダルEHR特徴表現学習に適したプライバシー保護アルゴリズムの道を開く。
論文 参考訳(メタデータ) (2024-03-22T03:01:42Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
MLA(Multimodal Learning with Alternating Unimodal Adaptation)を提案する。
MLAは、それを交互に一助学習プロセスに変換することで、従来の共同マルチモーダル学習プロセスを再構築する。
共有ヘッドを通じてモーダル間相互作用をキャプチャし、異なるモーダル間で連続的な最適化を行う。
実験は5つの多様なデータセットで行われ、完全なモダリティを持つシナリオと、欠落したモダリティを持つシナリオを含む。
論文 参考訳(メタデータ) (2023-11-17T18:57:40Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
ラベル付き単調データのみを用いた半教師付き環境における相互作用定量化の課題について検討する。
相互作用の正確な情報理論的定義を用いて、我々の重要な貢献は下界と上界の導出である。
本稿では、これらの理論結果を用いてマルチモーダルモデルの性能を推定し、データ収集をガイドし、様々なタスクに対して適切なマルチモーダルモデルを選択する方法について述べる。
論文 参考訳(メタデータ) (2023-06-07T15:44:53Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Self-Supervised Multimodal Domino: in Search of Biomarkers for
Alzheimer's Disease [19.86082635340699]
自己監督型表現学習アルゴリズムを編成する合理的な方法の分類法を提案する。
まず,おもちゃのマルチモーダルMNISTデータセットのモデルを評価し,アルツハイマー病患者を用いたマルチモーダル・ニューロイメージングデータセットに適用した。
提案手法は,従来の自己教師付きエンコーダデコーダ法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-25T20:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。