論文の概要: A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation
- arxiv url: http://arxiv.org/abs/2411.15616v1
- Date: Sat, 23 Nov 2024 17:35:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:45.578173
- Title: A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation
- Title(参考訳): 適応データセグメンテーションによる共変量とコンセプトドリフト管理へのスケーラブルなアプローチ
- Authors: Vennela Yarabolu, Govind Waghmare, Sonia Gupta, Siddhartha Asthana,
- Abstract要約: 多くの現実世界のアプリケーションでは、継続的機械学習(ML)システムは不可欠だが、データドリフトが困難である。
伝統的なドリフト適応法は典型的にはアンサンブル技術を用いてモデルを更新し、しばしばドリフトされた歴史データを破棄する。
ドリフトしたデータをモデルトレーニングプロセスに明示的に組み込むことは、モデルの精度と堅牢性を大幅に向上させる、と我々は主張する。
- 参考スコア(独自算出の注目度): 0.562479170374811
- License:
- Abstract: In many real-world applications, continuous machine learning (ML) systems are crucial but prone to data drift, a phenomenon where discrepancies between historical training data and future test data lead to significant performance degradation and operational inefficiencies. Traditional drift adaptation methods typically update models using ensemble techniques, often discarding drifted historical data, and focus primarily on either covariate drift or concept drift. These methods face issues such as high resource demands, inability to manage all types of drifts effectively, and neglecting the valuable context that historical data can provide. We contend that explicitly incorporating drifted data into the model training process significantly enhances model accuracy and robustness. This paper introduces an advanced framework that integrates the strengths of data-centric approaches with adaptive management of both covariate and concept drift in a scalable and efficient manner. Our framework employs sophisticated data segmentation techniques to identify optimal data batches that accurately reflect test data patterns. These data batches are then utilized for training on test data, ensuring that the models remain relevant and accurate over time. By leveraging the advantages of both data segmentation and scalable drift management, our solution ensures robust model accuracy and operational efficiency in large-scale ML deployments. It also minimizes resource consumption and computational overhead by selecting and utilizing relevant data subsets, leading to significant cost savings. Experimental results on classification task on real-world and synthetic datasets show our approach improves model accuracy while reducing operational costs and latency. This practical solution overcomes inefficiencies in current methods, providing a robust, adaptable, and scalable approach.
- Abstract(参考訳): 多くの実世界のアプリケーションでは、継続的機械学習(ML)システムは不可欠だが、データドリフトの傾向があり、これは過去のトレーニングデータと将来のテストデータとの相違がパフォーマンスの大幅な低下と運用上の非効率をもたらす現象である。
伝統的なドリフト適応法は通常、アンサンブル技術を用いてモデルを更新し、しばしばドリフトされた歴史的データを破棄し、主に共変量ドリフトまたは概念ドリフトに焦点を当てる。
これらの手法は、高いリソース要求、あらゆる種類のドリフトを効果的に管理できないこと、そして歴史的データがもたらす価値あるコンテキストを無視するといった問題に直面している。
ドリフトしたデータをモデルトレーニングプロセスに明示的に組み込むことは、モデルの精度と堅牢性を大幅に向上させる、と我々は主張する。
本稿では,データ中心アプローチの長所と,共変量および概念ドリフトの適応管理を,スケーラブルで効率的な方法で統合する高度なフレームワークを提案する。
我々のフレームワークは、テストデータパターンを正確に反映した最適なデータバッチを特定するために、洗練されたデータセグメンテーション技術を採用している。
これらのデータバッチは、テストデータのトレーニングに使用され、モデルが時間とともに関連性を持ち、正確であることを保証する。
データセグメンテーションとスケーラブルなドリフト管理の両方の利点を活用することで、大規模なMLデプロイメントにおいて堅牢なモデル精度と運用効率を確保することができる。
また、関連するデータサブセットを選択して利用することで、リソース消費と計算オーバーヘッドを最小化し、大幅なコスト削減につながる。
実世界のデータセットと合成データセットの分類タスクに関する実験結果から,運用コストとレイテンシを低減しつつ,モデル精度の向上を図っている。
この実用的なソリューションは、現在のメソッドの非効率性を克服し、堅牢で適応可能でスケーラブルなアプローチを提供します。
関連論文リスト
- SUDS: A Strategy for Unsupervised Drift Sampling [0.5437605013181142]
監視された機械学習は、データ分散が時間とともに変化するコンセプトドリフトに遭遇し、パフォーマンスが低下する。
本稿では,既存のドリフト検出アルゴリズムを用いて,同種サンプルを選択する新しい手法であるドリフトサンプリング戦略(SUDS)を提案する。
本研究は, 動的環境におけるラベル付きデータ利用の最適化におけるSUDSの有効性を示すものである。
論文 参考訳(メタデータ) (2024-11-05T10:55:29Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
雑音ラベル付きモデルを用いたトレーニングは安価で驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Quilt: Robust Data Segment Selection against Concept Drifts [30.62320149405819]
継続的機械学習パイプラインは、モデルが定期的にデータストリームでトレーニングされる産業環境で一般的である。
概念ドリフトは、データXとラベルy、P(X, y)の結合分布が時間とともに変化し、おそらくモデルの精度が低下するデータストリームで発生する。
既存のコンセプトドリフト適応アプローチは、主にモデルを新しいデータに更新することに集中し、ドリフトした履歴データを破棄する傾向がある。
モデル精度を最大化するデータセグメントを識別および選択するためのデータ中心フレームワークであるQultを提案する。
論文 参考訳(メタデータ) (2023-12-15T11:10:34Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
本稿では,制限付きラベル付きデータを用いたストリーミング環境の最適戦略を提案し,教師なし回帰のための適応手法を提案する。
提案手法は,初期ラベルのスパースセットを活用し,革新的なドリフト検出機構を導入する。
適応性を高めるために,Adaptive WINdowingアルゴリズムとRoot Mean Square Error (RMSE)に基づく誤り一般化アルゴリズムを統合する。
論文 参考訳(メタデータ) (2023-12-12T19:23:54Z) - Towards Accelerated Model Training via Bayesian Data Selection [45.62338106716745]
本稿では,モデルの一般化損失に対するデータの影響を調べることによって,より合理的なデータ選択原理を提案する。
近年の研究では、モデルの一般化損失に対するデータの影響を調べることによって、より合理的なデータ選択の原則が提案されている。
この研究は、軽量ベイズ処理を活用し、大規模な事前訓練モデル上に構築された既製のゼロショット予測器を組み込むことにより、これらの問題を解決する。
論文 参考訳(メタデータ) (2023-08-21T07:58:15Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
ドメイン分類は自然言語理解(NLU)の基本課題である
既存の継続的な学習アプローチの多くは、低い精度とパフォーマンスの変動に悩まされている。
本研究では,テキストデータに対するパラメータフリー連続学習モデルを提案する。
論文 参考訳(メタデータ) (2022-01-05T02:46:16Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
ハイパウシティシナリオにおけるデータ分布の学習を容易にする新しいフレームワークを提案する。
提案手法は,不完全データから学習過程を協調最適化タスクとして行うことに由来する。
論文 参考訳(メタデータ) (2021-04-03T20:57:57Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
本稿では,トレーニングデータの密度と制御性能の関係を考察する。
データセットの品質尺度を定式化し、$rho$-gap と呼ぶ。
フィードバック線形化制御法に$rho$-gapを適用する方法を示す。
論文 参考訳(メタデータ) (2020-05-25T12:13:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。