Cooperative engineering the multiple radio-frequency fields to reduce the X-junction barrier for ion trap chips
- URL: http://arxiv.org/abs/2411.15676v1
- Date: Sun, 24 Nov 2024 01:00:56 GMT
- Title: Cooperative engineering the multiple radio-frequency fields to reduce the X-junction barrier for ion trap chips
- Authors: Yarui Liu, Zhao Wang, Zixuan Xiang, Qikun Wang, Tianyang Hu, Xu Wang,
- Abstract summary: ion shuttling operations at the junction are more frequently used, such as in the areas of separation, merging, and exchanging.
Several studies have been conducted to optimize the geometries of the radio-frequency (RF) electrodes to generate ideal trapping electric fields.
An effective method was proposed to reduce the junction's pseudo-potential barrier and ion height variation by setting several individual RF electrodes.
- Score: 7.581541697986182
- License:
- Abstract: With the increasing number of ion qubits and improving performance of sophisticated quantum algorithms, more and more scalable complex ion trap electrodes have been developed and integrated. Nonlinear ion shuttling operations at the junction are more frequently used, such as in the areas of separation, merging, and exchanging. Several studies have been conducted to optimize the geometries of the radio-frequency (RF) electrodes to generate ideal trapping electric fields with a lower junction barrier and an even ion height of the RF saddle points. However, this iteration is time-consuming and commonly accompanied by complicated and sharp electrode geometry. Therefore, high-accuracy fabrication process and high electric breakdown voltage are essential. In the current work, an effective method was proposed to reduce the junction's pseudo-potential barrier and ion height variation by setting several individual RF electrodes and adjusting each RF voltage amplitude without changing the geometry of the electrode structure. The simulation results show that this method shows the same effect on engineering the trapping potential and reducing the potential barrier, but requires fewer parameters and optimization time. By combining this method with the geometrical shape-optimizing, the pseudo-potential barrier and the ion height variation near the junction can be further reduced. In addition, the geometry of the electrodes can be simplified to relax the fabrication precision and keep the ability to engineer the trapping electric field in real-time even after the fabrication of the electrodes, which provides a potential all-electric degree of freedom for the design and control of the two-dimensional ion crystals and investigation of their phase transition.
Related papers
- Multi-junction surface ion trap for quantum computing [0.0]
Surface ion traps with two-dimensional layouts of trapping regions are natural architectures for storing large numbers of ions.
Here we demonstrate a trap that addresses the scaling challenge of increasing power dissipation as the RF electrode increases in size.
arXiv Detail & Related papers (2024-03-01T00:51:38Z) - Bilayer Ion Trap Design for 2D Arrays [0.0]
Junctions are fundamental elements that support qubit locomotion in two-dimensional ion trap arrays.
We propose and simulate a novel two-layer junction design incorporating two perpendicularly rotoreflected (rotated, then reflected) linear ion traps.
Our novel junction layout has the potential to enhance the flexibility of microfabricated ion trap control to enable large-scale trapped-ion quantum computing.
arXiv Detail & Related papers (2023-10-11T05:06:04Z) - Characterizing the spatial potential of a surface electrode ion trap [0.0]
We employ a simple yet highly precise parametric expression to describe the spatial field of a rectangular-shaped electrode.
An optimization method is introduced to precisely characterize the axial electric field intensity created by the powered electrode and the stray field.
arXiv Detail & Related papers (2023-01-02T08:44:41Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Near-Surface Electrical Characterisation of Silicon Electronic Devices
Using Focused keV Ions [45.82374977939355]
We show how to implant low-energy ions into silicon devices featuring an enlarged 60x60 $mu$m sensitive area.
Despite the weak internal electric field, near-unity charge collection efficiency is obtained from the entire sensitive area.
This can be explained by the critical role that the high-quality thermal gate oxide plays in the ion detection response.
arXiv Detail & Related papers (2022-01-27T06:29:46Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Optimizing lateral quantum dot geometries for reduced exchange noise [0.0]
This work explores how the physical device affects the sensitivity of exchange to fluctuations in applied gate voltage and interdot bias due to charge noise.
We present a modified linear combination of harmonic orbitals interaction (LCHO-CI) method for calculating exchange energies.
arXiv Detail & Related papers (2020-12-18T21:06:49Z) - Design of a novel monolithic parabolic-mirror ion-trap to precisely
align the RF null point with the optical focus [7.649922258673272]
We propose a novel ion trap design with the high collection efficiency parabolic-mirror integrated with the ion trap electrodes.
This design is expected to be a robust scheme for trapping ion to speed entanglement network node.
arXiv Detail & Related papers (2020-04-19T13:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.