TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models
- URL: http://arxiv.org/abs/2411.15737v3
- Date: Sun, 16 Feb 2025 12:03:52 GMT
- Title: TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models
- Authors: Jiahao Wang, Mingyue Cheng, Qingyang Mao, Yitong Zhou, Feiyang Xu, Xin Li,
- Abstract summary: Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification.
LLMs directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs.
We propose TableTime, which reformulates MTSC as a table understanding task.
- Score: 14.880203496664963
- License:
- Abstract: Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification (MTSC). Effective adaptation of LLMs for MTSC necessitates informative data representations. Existing LLM-based methods directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs. Despite their effectiveness, we reveal that these methods conceal three inherent bottlenecks: (1) they struggle to encode temporal and channel-specific information in a lossless manner, both of which are critical components of multivariate time series; (2) it is much difficult to align the learned representation space with the semantic space of the LLMs; (3) they require task-specific retraining, which is both computationally expensive and labor-intensive. To bridge these gaps, we propose TableTime, which reformulates MTSC as a table understanding task. Specifically, TableTime introduces the following strategies: (1) convert multivariate time series into a tabular form, thus minimizing information loss to the greatest extent; (2) represent tabular time series in text format to achieve natural alignment with the semantic space of LLMs; (3) design a reasoning framework that integrates contextual text information, neighborhood assistance, multi-path inference and problem decomposition to enhance the reasoning ability of LLMs and realize zero-shot classification. Extensive experiments performed on 10 publicly representative datasets from UEA archive verify the superiorities of the TableTime.
Related papers
- Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
Large Language Models (LLMs) have been extensively applied in time series analysis.
Yet, their utility in the few-shot classification (i.e., a crucial training scenario) is underexplored.
We aim to leverage the extensive pre-trained knowledge in LLMs to overcome the data scarcity problem.
arXiv Detail & Related papers (2025-01-30T03:59:59Z) - Rethinking Time Series Forecasting with LLMs via Nearest Neighbor Contrastive Learning [1.7892194562398749]
We propose NNCL-TLLM: Nearest Neighbor Contrastive Learning for Time series forecasting via Large Language Models.
First, we generate time series compatible text prototypes such that each text prototype represents both word token embeddings in its neighborhood and time series characteristics.
We then fine-tune the layer normalization and positional embeddings of the LLM, keeping the other layers intact, reducing the trainable parameters and decreasing the computational cost.
arXiv Detail & Related papers (2024-12-06T06:32:47Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTime is a hierarchical multi-modal model that seamlessly integrates temporal information into large language models.
Our findings highlight the potential of integrating temporal features into LLMs, paving the way for advanced time series analysis.
arXiv Detail & Related papers (2024-10-24T12:32:19Z) - Learning to Reduce: Towards Improving Performance of Large Language Models on Structured Data [39.29778853025738]
Large Language Models (LLMs) have been achieving competent performance on a wide range of downstream tasks.
This paper proposes a framework, Learning to Reduce, that fine-tunes a language model with On-Policy Learning to generate a reduced version of an input structured data.
arXiv Detail & Related papers (2024-07-03T01:51:50Z) - LITA: Language Instructed Temporal-Localization Assistant [71.68815100776278]
We introduce time tokens that encode timestamps relative to the video length to better represent time in videos.
We also introduce SlowFast tokens in the architecture to capture temporal information at fine temporal resolution.
We show that our emphasis on temporal localization also substantially improves video-based text generation compared to existing Video LLMs.
arXiv Detail & Related papers (2024-03-27T22:50:48Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
Training datasets for large language models (LLMs) are often not fully disclosed.
We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages.
arXiv Detail & Related papers (2023-09-17T23:49:10Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.