Enhancing the automatic segmentation and analysis of 3D liver vasculature models
- URL: http://arxiv.org/abs/2411.15778v1
- Date: Sun, 24 Nov 2024 10:58:48 GMT
- Title: Enhancing the automatic segmentation and analysis of 3D liver vasculature models
- Authors: Yassine Machta, Omar Ali, Kevin Hakkakian, Ana Vlascenau, Amaury Facque, Nicolas Golse, Irene Vignon-Clementel,
- Abstract summary: Venous trees - the portal (perfusing) and the hepatic (draining) trees are important for understanding the liver anatomy and disease state.
This research aims to improve the 3D segmentation, skeletonization, and subsequent analysis of vessel trees.
- Score: 0.3957768262206625
- License:
- Abstract: Surgical assessment of liver cancer patients requires identification of the vessel trees from medical images. Specifically, the venous trees - the portal (perfusing) and the hepatic (draining) trees are important for understanding the liver anatomy and disease state, and perform surgery planning. This research aims to improve the 3D segmentation, skeletonization, and subsequent analysis of vessel trees, by creating an automatic pipeline based on deep learning and image processing techniques. The first part of this work explores the impact of differentiable skeletonization methods such as ClDice and morphological skeletonization loss, on the overall liver vessel segmentation performance. To this aim, it studies how to improve vessel tree connectivity. The second part of this study converts a single class vessel segmentation into multi-class ones, separating the two venous trees. It builds on the previous two-class vessel segmentation model, which vessel tree outputs might be entangled, and on connected components and skeleton analyses of the trees. After providing sub-labeling of the specific anatomical branches of each venous tree, these algorithms also enable a morphometric analysis of the vessel trees by extracting various geometrical markers. In conclusion, we propose a method that successfully improves current skeletonization methods, for extensive vascular trees that contain vessels of different calibers. The separation algorithm creates a clean multi-class segmentation of the vessels, validated by surgeons to provide low error. A new, publicly shared high-quality liver vessel dataset of 77 cases is thus created. Finally a method to annotate vessel trees according to anatomy is provided, enabling a unique liver vessel morphometry analysis.
Related papers
- Scale-specific auxiliary multi-task contrastive learning for deep liver vessel segmentation [0.8713453935346684]
This paper provides a new deep supervised approach for vessel segmentation.
We propose a new clustering technique to decompose the tree into various scale levels.
Then, we extend standard 3D UNet to multi-task learning by incorporating scale-specific auxiliary tasks and contrastive learning to encourage the discrimination between scales in the shared representation.
arXiv Detail & Related papers (2024-09-18T22:03:22Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Robust semi-automatic vessel tracing in the human retinal image by an
instance segmentation neural network [1.324564545341267]
We present a novel approach for a robust semi-automatic vessel tracing algorithm on human fundus images by an instance segmentation neural network (InSegNN)
InSegNN separates and labels different vascular trees individually and therefore enable tracing each tree throughout its branching.
We have demonstrated tracing individual vessel trees from fundus images, and simultaneously retain the vessel hierarchy information.
arXiv Detail & Related papers (2024-02-15T16:25:28Z) - Morphology Edge Attention Network and Optimal Geometric Matching
Connection model for vascular segmentation [3.6368619769561668]
We propose a novel Morphology Edge Attention Network (MEA-Net) for the segmentation of vessel-like structures.
We also present an Optimal Geometric Matching Connection (OGMC) model to connect the broken vessel segments.
Our method achieves superior or competitive results compared to state-of-the-art methods on four datasets of 3D vascular segmentation tasks.
arXiv Detail & Related papers (2023-06-02T01:52:35Z) - Simultaneous segmentation and classification of the retinal arteries and
veins from color fundus images [6.027522272446452]
The study of the retinal vasculature is a fundamental stage in the screening and diagnosis of many diseases.
We propose a novel approach for the simultaneous segmentation and classification of the retinal A/V from eye fundus images.
arXiv Detail & Related papers (2022-09-20T09:54:01Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases
Treatment: Status Quo [55.04215695343928]
The aortic vessel tree is composed of the aorta and its branching arteries.
We systematically review computing techniques for the automatic and semi-automatic segmentation of the aortic vessel tree.
arXiv Detail & Related papers (2021-08-06T08:18:28Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
We propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels.
The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images.
arXiv Detail & Related papers (2021-05-31T06:55:43Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - TopNet: Topology Preserving Metric Learning for Vessel Tree
Reconstruction and Labelling [22.53041565779104]
We propose a novel deep learning architecture for vessel tree reconstruction.
The network architecture simultaneously solves the task of detecting voxels on vascular centerlines (i.e. nodes) and estimates connectivity between center-voxels (edges) in the tree structure to be reconstructed.
A thorough evaluation on public IRCAD dataset shows that the proposed method considerably outperforms existing semantic segmentation based methods.
arXiv Detail & Related papers (2020-09-18T07:55:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.