Anatomy-guided Pathology Segmentation
- URL: http://arxiv.org/abs/2407.05844v1
- Date: Mon, 8 Jul 2024 11:44:15 GMT
- Title: Anatomy-guided Pathology Segmentation
- Authors: Alexander Jaus, Constantin Seibold, Simon Reiß, Lukas Heine, Anton Schily, Moon Kim, Fin Hendrik Bahnsen, Ken Herrmann, Rainer Stiefelhagen, Jens Kleesiek,
- Abstract summary: We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
- Score: 56.883822515800205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pathological structures in medical images are typically deviations from the expected anatomy of a patient. While clinicians consider this interplay between anatomy and pathology, recent deep learning algorithms specialize in recognizing either one of the two, rarely considering the patient's body from such a joint perspective. In this paper, we develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features. Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy and interleaves them via a mixing strategy into the pathology-decoder for anatomy-informed pathology predictions. In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods. Code and models will be publicly available at github.com/alexanderjaus/APEx.
Related papers
- HATs: Hierarchical Adaptive Taxonomy Segmentation for Panoramic Pathology Image Analysis [19.04633470168871]
Panoramic image segmentation in computational pathology presents a remarkable challenge due to the morphologically complex and variably scaled anatomy.
In this paper, we propose a novel Hierarchical Adaptive Taxonomy (HATs) method, which is designed to thoroughly segment panoramic views of kidney structures by leveraging detailed anatomical insights.
Our approach entails (1) the innovative HATs technique which translates spatial relationships among 15 distinct object classes into a versatile "plug-and-play" loss function that spans across regions, functional units, and cells, (2) the incorporation of anatomical hierarchies and scale considerations into a unified simple matrix representation for all panoramic entities, and (3) the
arXiv Detail & Related papers (2024-06-30T05:35:26Z) - Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
Key anatomical features, such as the number of organs, their shapes and relative positions, are crucial for building a robust multi-organ segmentation model.
We introduce a novel architecture called the Anatomy-Informed Network (AIC-Net)
AIC-Net incorporates a learnable input termed "Anatomical Prior", which can be adapted to patient-specific anatomy.
arXiv Detail & Related papers (2024-03-27T10:46:24Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Region-based Contrastive Pretraining for Medical Image Retrieval with
Anatomic Query [56.54255735943497]
Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR)
We introduce a novel Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR)
arXiv Detail & Related papers (2023-05-09T16:46:33Z) - Data and Knowledge Co-driving for Cancer Subtype Classification on
Multi-Scale Histopathological Slides [4.22412600279685]
We propose a Data and Knowledge Co-driving (D&K) model to replicate the process of cancer subtype classification on a histological slide like a pathologist.
Specifically, in the data-driven module, the bagging mechanism in ensemble learning is leveraged to integrate the histological features from various bags extracted by the embedding representation unit.
arXiv Detail & Related papers (2023-04-18T21:57:37Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Semi-supervised Pathology Segmentation with Disentangled Representations [10.834978793226444]
We propose Anatomy-Pathology Disentanglement Network (APD-Net), a pathology segmentation model that attempts to learn jointly for the first time.
APD-Net can perform pathology segmentation with few annotations, maintain performance with different amounts of supervision, and outperform related deep learning methods.
arXiv Detail & Related papers (2020-09-05T17:07:59Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.