論文の概要: Efficient and Private: Memorisation under differentially private parameter-efficient fine-tuning in language models
- arxiv url: http://arxiv.org/abs/2411.15831v1
- Date: Sun, 24 Nov 2024 13:17:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:23:15.486681
- Title: Efficient and Private: Memorisation under differentially private parameter-efficient fine-tuning in language models
- Title(参考訳): 効率性とプライベート:言語モデルにおける差分プライベートパラメータ効率の微調整による覚書化
- Authors: Olivia Ma, Jonathan Passerat-Palmbach, Dmitrii Usynin,
- Abstract要約: 特定のタスクのための微調整された大型言語モデル(LLM)は、不注意に記憶し、センシティブなトレーニングデータを漏洩する可能性があるため、プライバシのリスクをもたらす。
差分プライバシー(DP)は、これらのリスクを軽減するソリューションを提供するが、重大な計算とパフォーマンスのトレードオフをもたらす。
PEFT法は,パラメータを少なくし,プライバシリークを著しく低減しつつ,標準的な微調整に匹敵する性能を実現する。
- 参考スコア(独自算出の注目度): 2.3281513013731145
- License:
- Abstract: Fine-tuning large language models (LLMs) for specific tasks introduces privacy risks, as models may inadvertently memorise and leak sensitive training data. While Differential Privacy (DP) offers a solution to mitigate these risks, it introduces significant computational and performance trade-offs, particularly with standard fine-tuning approaches. Previous work has primarily focused on full-parameter updates, which are computationally intensive and may not fully leverage DPs potential in large models. In this work, we address these shortcomings by investigating Parameter-Efficient Fine-Tuning (PEFT) methods under DP constraints. We show that PEFT methods achieve comparable performance to standard fine-tuning while requiring fewer parameters and significantly reducing privacy leakage. Furthermore, we incorporate a data poisoning experiment involving intentional mislabelling to assess model memorisation and directly measure privacy risks. Our findings indicate that PEFT methods not only provide a promising alternative but also serve as a complementary approach for privacy-preserving, resource-efficient fine-tuning of LLMs.
- Abstract(参考訳): 特定のタスクのための微調整された大型言語モデル(LLM)は、不注意に記憶し、センシティブなトレーニングデータを漏洩する可能性があるため、プライバシのリスクをもたらす。
差分プライバシー(DP)は、これらのリスクを軽減するソリューションを提供するが、特に標準的な微調整アプローチで、計算とパフォーマンスのトレードオフを著しく導入する。
これまでの研究は主に全パラメータ更新に重点を置いてきたが、これは計算集約的であり、大規模モデルではDPの可能性を完全に活用できない可能性がある。
本研究では,DP制約下でのパラメータ効率の良いファインチューニング(PEFT)手法について検討することにより,これらの問題点に対処する。
PEFT法は,パラメータを少なくし,プライバシリークを著しく低減しつつ,標準的な微調整に匹敵する性能を実現する。
さらに、意図的な誤認を伴うデータ中毒実験を組み込んで、モデル記憶の評価と、プライバシーリスクの直接測定を行う。
本研究は,PEFT法が将来性のある代替手段を提供するだけでなく,LCMのプライバシー保護,資源効率向上のための補完的手法として有効であることを示す。
関連論文リスト
- Revisiting Privacy, Utility, and Efficiency Trade-offs when Fine-Tuning Large Language Models [12.635018411121413]
プライバシーリスクの最小化とユーティリティの最大化において、高い計算効率を維持しながら、固有のトレードオフについて検討する。
LoRAのような効率的な微調整手法は、DPのようなプライベートな微調整手法と同様のプライバシーリスクを軽減する。
論文 参考訳(メタデータ) (2025-02-18T22:16:03Z) - Differentially Private Random Feature Model [52.468511541184895]
プライバシを保存するカーネルマシンに対して,差分的にプライベートな特徴モデルを作成する。
本手法は,プライバシを保護し,一般化誤差を導出する。
論文 参考訳(メタデータ) (2024-12-06T05:31:08Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Fine-Tuning Language Models with Differential Privacy through Adaptive Noise Allocation [33.795122935686706]
本稿では,モデルパラメータの重要性に基づいて適応的に付加雑音を割り当てる新しいアルゴリズムANADPを提案する。
ANADPは,一連のデータセットにおいて,通常の微調整と従来のDP微調整のパフォーマンスギャップを狭めることを実証する。
論文 参考訳(メタデータ) (2024-10-03T19:02:50Z) - Differentially Private Parameter-Efficient Fine-tuning for Large ASR Models [21.1164927055712]
大型のASRモデルは、機密情報を不注意に漏洩させ、差分プライバシー(DP)のような正式なプライバシー対策によって緩和することができる。
本研究は,ASRモデルにおいて,より少ない計算と性能コストでプライバシーリスクを軽減する手段として,DPパラメータ効率の微調整を提案する。
論文 参考訳(メタデータ) (2024-10-02T18:49:15Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
微分プライバシーと拡散モデル(DM)の統合は、有望だが挑戦的なフロンティアを示している。
この分野での最近の進歩は、公開データによる事前学習によって高品質な合成データを生成する可能性を強調している。
本稿では,プライバシとユーティリティのトレードオフを高めるために,トレーニング可能なパラメータの数を最小限に抑える,プライベート拡散モデルに最適化された戦略を提案する。
論文 参考訳(メタデータ) (2024-06-03T14:18:04Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Exploring Machine Learning Privacy/Utility trade-off from a
hyperparameters Lens [10.727571921061024]
Differentially Private Descent Gradient (DPSGD)は、プライバシ保護モデルをトレーニングするための最先端の手法である。
アクティベーション関数をドロップインで置き換えることで、新しい最先端の精度を実現する。
論文 参考訳(メタデータ) (2023-03-03T09:59:42Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
本稿では,大規模なトランスフォーマーベース言語モデルのためのSDPを実現するための,シンプルで効果的なジャストファイントゥンツースプライバシ機構を提案する。
実験により, カナリア挿入攻撃に対して頑健でありながら, 高い性能が得られた。
論文 参考訳(メタデータ) (2022-04-15T22:36:55Z) - Large Language Models Can Be Strong Differentially Private Learners [70.0317718115406]
Differentially Private(DP)学習は、テキストの大規模なディープラーニングモデルを構築する上で、限られた成功を収めている。
この性能低下は,大規模な事前学習モデルを用いることで緩和可能であることを示す。
本稿では,DP-SGDにおけるクリッピングを,サンプルごとの勾配をインスタンス化せずに実行可能にするメモリ節約手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T01:45:27Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。